ENGINE
4G6 SERIES

CONTENTS

GENERAL INFORMATION ... 11A-0-3
1. SPECIFICATIONS ... 11A-1-1
 SERVICE SPECIFICATIONS ... 11A-1-1
 TORQUE SPECIFICATIONS ... 11A-1-4
 NEW TIGHTENING METHOD -
 BY USE OF BOLTS TO BE TIGHTENED IN PLASTIC AREA 11A-1-9
 SEALANTS .. 11A-1-9
 FORM-IN-PLACE GASKET .. 11A-1-10
2. SPECIAL TOOLS .. 11A-2-1
3. ALTERNATOR AND IGNITION SYSTEM 11A-3-1
3a. INTAKE MANIFOLD (GDI) ... 11A-3a-1
4. TIMING BELT .. 11A-4-1
4a. EXHAUST MANIFOLD (GDI) ... 11A-4a-1
5. FUEL AND EMISSION CONTROL PARTS 11A-5-1
5a. FUEL PARTS (GDI) ... 11A-5a-1
6. WATER PUMP AND INTAKE MANIFOLD 11A-6-1
6a. WATER PUMP AND WATER HOSE (GDI) 11A-6a-1
7. EXHAUST MANIFOLD ... 11A-7-1
8. ROCKER ARMS AND CAMSHAFT .. 11A-8-1
8a. ROCKER ARMS AND CAMSHAFTS (GDI) 11A-8a-1
9. CYLINDER HEAD AND VALVES .. 11A-9-1
10. FRONT CASE, COUNTERBALANCE SHAFTS AND OIL PAN 11A-10-1
11. PISTON AND CONNECTING ROD .. 11A-11-1
12. CRANKSHAFT, FLYWHEEL AND DRIVE PLATE 11A-12-1
GENERAL INFORMATION

SOHC-4G63

<table>
<thead>
<tr>
<th>Descriptions</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>In-line OHV, SOHC</td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>4</td>
</tr>
<tr>
<td>Combustion chamber</td>
<td>Pentroof type</td>
</tr>
<tr>
<td>Total displacement dm³</td>
<td>1,997</td>
</tr>
<tr>
<td>Cylinder bore mm</td>
<td>85.0</td>
</tr>
<tr>
<td>Piston stroke mm</td>
<td>88.0</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>10</td>
</tr>
<tr>
<td>Valve timing</td>
<td></td>
</tr>
<tr>
<td>Intake valve</td>
<td>Opens (BTDC) 18°</td>
</tr>
<tr>
<td></td>
<td>Closes (ABDC) 58°</td>
</tr>
<tr>
<td>Exhaust valve</td>
<td>Opens (BBDC) 58°</td>
</tr>
<tr>
<td></td>
<td>Closes (ATDC) 18°</td>
</tr>
<tr>
<td>Lubrication system</td>
<td>Pressure feed, full-flow filtration</td>
</tr>
<tr>
<td>Oil pump type</td>
<td>Involute gear type</td>
</tr>
</tbody>
</table>

SOHC-4G64

<table>
<thead>
<tr>
<th>Descriptions</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>In-line OHV, SOHC</td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>4</td>
</tr>
<tr>
<td>Combustion chamber</td>
<td>Pentroof type</td>
</tr>
<tr>
<td>Total displacement dm³</td>
<td>2,351</td>
</tr>
<tr>
<td>Cylinder bore mm</td>
<td>86.5</td>
</tr>
<tr>
<td>Piston stroke mm</td>
<td>100.0</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>10</td>
</tr>
<tr>
<td>Valve timing</td>
<td></td>
</tr>
<tr>
<td>Intake valve</td>
<td>Opens (BTDC) 16°</td>
</tr>
<tr>
<td></td>
<td>Closes (ABDC) 53°</td>
</tr>
<tr>
<td>Exhaust valve</td>
<td>Opens (BBDC) 50°</td>
</tr>
<tr>
<td></td>
<td>Closes (ATDC) 16°</td>
</tr>
<tr>
<td>Lubrication system</td>
<td>Pressure feed, full-flow filtration</td>
</tr>
<tr>
<td>Oil pump type</td>
<td>Involute gear type</td>
</tr>
</tbody>
</table>
Descriptions

<table>
<thead>
<tr>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Number of cylinders</td>
</tr>
<tr>
<td>Combustion chamber</td>
</tr>
<tr>
<td>Total displacement dm³</td>
</tr>
<tr>
<td>Cylinder bore mm</td>
</tr>
<tr>
<td>Piston stroke mm</td>
</tr>
<tr>
<td>Compression ratio</td>
</tr>
<tr>
<td>Valve timing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lubrication system</td>
</tr>
<tr>
<td>Oil pump type</td>
</tr>
</tbody>
</table>

NOTE

GDI is a trademark of Mitsubishi Motors Corporation.
1. SPECIFICATIONS

SERVICE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard value</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing belt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto-tensioner rod projection length mm</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Auto-tensioner rod pushed-in amount [when pushed with a force of 98 - 196 N] mm</td>
<td>1.0 or less</td>
<td>-</td>
</tr>
<tr>
<td>Rocker arms and camshaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camshaft cam height mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4G63 SOHC Intake</td>
<td>37.39</td>
<td>36.89</td>
</tr>
<tr>
<td>Exhaust</td>
<td>37.14</td>
<td>36.64</td>
</tr>
<tr>
<td>4G64 SOHC Intake</td>
<td>37.39</td>
<td>36.89</td>
</tr>
<tr>
<td>Exhaust</td>
<td>36.83</td>
<td>36.33</td>
</tr>
<tr>
<td>Lash adjuster leak down time</td>
<td>3 - 20/1.0</td>
<td>-</td>
</tr>
<tr>
<td>[diesel fuel at 15 - 20°C] seconds/mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camshaft journal outer diameter mm</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>Rocker arms and camshaft (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camshaft cam height mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>35.79</td>
<td>35.29</td>
</tr>
<tr>
<td>Exhaust</td>
<td>37.14</td>
<td>36.64</td>
</tr>
<tr>
<td>Lash adjuster leak down time</td>
<td>3 - 20/1.0</td>
<td>-</td>
</tr>
<tr>
<td>[diesel fuel at 15 - 20°C] seconds/mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camshaft journal outer diameter mm</td>
<td>26</td>
<td>-</td>
</tr>
<tr>
<td>Cylinder head and valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder head flatness of gasket surface mm</td>
<td>Less than 0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>Cylinder head grinding limit of gasket surface mm</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Total resurfacing depth of both cylinder head and cylinder block</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cylinder head overall height mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>GDI</td>
<td>132</td>
<td>-</td>
</tr>
<tr>
<td>Cylinder head bolt shank length mm</td>
<td>-</td>
<td>Maximum 99.4</td>
</tr>
<tr>
<td>Valve thickness of valve head (margin) mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Exhaust</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>GDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Exhaust</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Valve overall height mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>112.30</td>
<td>111.80</td>
</tr>
<tr>
<td>Exhaust</td>
<td>114.11</td>
<td>113.61</td>
</tr>
<tr>
<td>GDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>105.5</td>
<td>105.0</td>
</tr>
<tr>
<td>Exhaust</td>
<td>105.7</td>
<td>105.2</td>
</tr>
<tr>
<td>Valve stem outer diameter mm</td>
<td>6.0</td>
<td>-</td>
</tr>
<tr>
<td>Items</td>
<td>SOHC</td>
<td>Standard value</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Valve thickness to valve guide clearance mm</td>
<td>Intake</td>
<td>0.02 - 0.05</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.03 - 0.07</td>
</tr>
<tr>
<td></td>
<td>GDI</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>0.05 - 0.09</td>
</tr>
<tr>
<td>Valve face angle mm</td>
<td></td>
<td>45° - 45.5°</td>
</tr>
<tr>
<td>Valve spring free length mm</td>
<td>SOHC</td>
<td>51.0</td>
</tr>
<tr>
<td></td>
<td>GDI</td>
<td>48.3</td>
</tr>
<tr>
<td>Valve spring load/install height N/mm</td>
<td>SOHC</td>
<td>267/44.2</td>
</tr>
<tr>
<td></td>
<td>GDI</td>
<td>294/40.0</td>
</tr>
<tr>
<td>Valve spring out-of-squareness</td>
<td>SOHC</td>
<td>2° or less</td>
</tr>
<tr>
<td></td>
<td>GDI</td>
<td>1.5° or less</td>
</tr>
<tr>
<td>Valve seat valve contact width mm</td>
<td></td>
<td>0.9 - 1.3</td>
</tr>
<tr>
<td>Valve guide inner diameter mm</td>
<td>SOHC</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>GDI</td>
<td>6.6</td>
</tr>
<tr>
<td>Valve guide projection from cylinder head upper</td>
<td>SOHC</td>
<td>14.0</td>
</tr>
<tr>
<td>surface mm</td>
<td>GDI</td>
<td>19.5</td>
</tr>
<tr>
<td>Valve stem projection mm</td>
<td>SOHC</td>
<td>49.30</td>
</tr>
<tr>
<td></td>
<td>GDI</td>
<td>Intake</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td>48.40</td>
</tr>
<tr>
<td>Oversize rework dimensions of valve guide hole</td>
<td>0.05 Oversize diameter</td>
<td>11.05 - 11.07</td>
</tr>
<tr>
<td>(SOHC) mm</td>
<td>0.25 Oversize diameter</td>
<td>11.25 - 11.27</td>
</tr>
<tr>
<td></td>
<td>0.50 Oversize diameter</td>
<td>11.50 - 11.52</td>
</tr>
<tr>
<td>Oversize rework dimensions of valve guide hole</td>
<td>0.05 Oversize diameter</td>
<td>12.05 - 12.07</td>
</tr>
<tr>
<td>(GDI) mm</td>
<td>0.25 Oversize diameter</td>
<td>12.25 - 12.27</td>
</tr>
<tr>
<td></td>
<td>0.50 Oversize diameter</td>
<td>12.50 - 12.52</td>
</tr>
<tr>
<td>Intake oversize rework dimensions of valve seat</td>
<td>0.3 Oversize diameter</td>
<td>34.30 - 34.33</td>
</tr>
<tr>
<td>hole (SOHC) mm</td>
<td>0.6 Oversize diameter</td>
<td>34.60 - 34.63</td>
</tr>
<tr>
<td>Intake oversize rework dimensions of valve seat</td>
<td>0.3 Oversize diameter</td>
<td>35.30 - 35.33</td>
</tr>
<tr>
<td>hole (GDI) mm</td>
<td>0.6 Oversize diameter</td>
<td>35.60 - 35.63</td>
</tr>
<tr>
<td>Exhaust oversize rework dimensions of valve seat</td>
<td>0.3 Oversize diameter</td>
<td>34.30 - 34.33</td>
</tr>
<tr>
<td>hole (SOHC) mm</td>
<td>0.6 Oversize diameter</td>
<td>34.60 - 34.63</td>
</tr>
<tr>
<td>Exhaust oversize rework dimensions of valve seat</td>
<td>0.3 Oversize diameter</td>
<td>33.30 - 33.33</td>
</tr>
<tr>
<td>hole (GDI) mm</td>
<td>0.6 Oversize diameter</td>
<td>33.60 - 33.63</td>
</tr>
</tbody>
</table>
Front case, counterbalance shaft and oil pan

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard value</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil pump side clearance mm Drive gear</td>
<td>0.08 - 0.14</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.06 - 0.12</td>
<td>-</td>
</tr>
<tr>
<td>Oil pressure at curb idle speed kPa [Oil temperature is 75 to 90°C]</td>
<td>78 or more</td>
<td>-</td>
</tr>
</tbody>
</table>

Piston and connecting rod

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard value</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston outer diameter mm 4G63</td>
<td>85.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>86.5</td>
<td>-</td>
</tr>
<tr>
<td>Piston ring side clearance mm No. 1</td>
<td>0.02 - 0.06</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>0.02 - 0.06</td>
<td>0.1</td>
</tr>
<tr>
<td>Piston ring end gap mm No. 1</td>
<td>0.25 - 0.35</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>0.40 - 0.55</td>
<td>0.8</td>
</tr>
<tr>
<td>Piston pin outer diameter mm</td>
<td>22.0</td>
<td>-</td>
</tr>
<tr>
<td>Piston pin press-in load N (Room temperature)</td>
<td>7,350 - 17,200</td>
<td>-</td>
</tr>
<tr>
<td>Crankshaft pin oil clearance mm</td>
<td>0.02 - 0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Connecting rod big end side clearance mm</td>
<td>0.10 - 0.25</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Crankshaft, flywheel and drive plate

<table>
<thead>
<tr>
<th>Items</th>
<th>Standard value</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankshaft end play mm</td>
<td>0.05 - 0.25</td>
<td>0.40</td>
</tr>
<tr>
<td>Crankshaft journal outer diameter mm</td>
<td>57.0</td>
<td>-</td>
</tr>
<tr>
<td>Crankshaft pin outer diameter mm</td>
<td>45.0</td>
<td>-</td>
</tr>
<tr>
<td>Crankshaft journal oil clearance mm</td>
<td>0.02 - 0.04</td>
<td>0.1</td>
</tr>
<tr>
<td>Bearing cap bolt shank length mm</td>
<td>-</td>
<td>Maximum 71.1</td>
</tr>
<tr>
<td>Piston to cylinder clearance mm</td>
<td>0.02 - 0.04</td>
<td>-</td>
</tr>
<tr>
<td>Cylinder block flatness of gasket surface mm</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Cylinder block grinding limit of gasket surface mm</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Total resurfacing depth of both cylinder head and cylinder block</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cylinder block overall height mm 4G63</td>
<td>284</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>-</td>
</tr>
<tr>
<td>Cylinder block inner diameter mm 4G63</td>
<td>85.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>86.5</td>
<td>-</td>
</tr>
<tr>
<td>Cylindricity mm</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>Items</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Alternator and ignition system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water pump pulley</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Adjusting bolt</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Lock bolt</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Alternator brace</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Alternator pivot nut</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Crankshaft pulley</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Ignition coil (Multipoint fuel injection)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Spark plug</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Distributor (Carburetor)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Camshaft position sensing cylinder (Multipoint fuel injection)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Camshaft position sensor support (Multipoint fuel injection)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Camshaft position sensor (Multipoint fuel injection)</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Oil level gauge guide</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Idler pulley bracket (M8) (Vehicle for Hong Kong)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Idler pulley bracket (M10) (Vehicle for Hong Kong)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Idler pulley (Vehicle for Hong Kong)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Intake manifold (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuum pipe and hose (Flange bolt)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Vacuum pipe and hose (Bolt, washer assembly)</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Solenoid valve</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Vacuum pipe</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Throttle body</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Intake manifold stay (M6)</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Intake manifold stay (M8)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Air intake plenum resonator (Flange bolt)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Air intake plenum resonator (Bolt, washer assembly)</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>EGR valve</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>EGR valve support</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Intake manifold</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Timing belt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing belt cover flange bolt</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Items</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Timing belt cover washer bolt</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Power steering bracket</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Crankshaft angle sensor (Multipoint fuel injection)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Tensioner arm</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Tensioner puller</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Auto tensioner</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Idler pulley</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Engine support bracket</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Oil pump sprocket</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Crankshaft bolt</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Tensioner “B”</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Counterbalance shaft sprocket</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Camshaft sprocket bolt</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold cover</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold (M10)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold (M8)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Engine hanger</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Fuel and emission parts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carburetor (Carburetor)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Fuel vapor separator (Carburetor)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Throttle body (Multipoint fuel injection)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>EGR valve (Except General Export)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Injectors and delivery pipe (Multipoint fuel injection)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Fuel pressure regulator (Multipoint fuel injection)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Fuel part (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel low pressure pipe (M6)</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Fuel low pressure pipe (M8)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Fuel pump return nipple</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Clamp A</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Fuel pipe bracket</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Fuel feed pipe</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Items</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Fuel pump</td>
<td>4.9 → 17 ± 2</td>
<td></td>
</tr>
<tr>
<td>Harness bracket</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>Fuel return pipe</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Fuel high pressure regulator</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Fuel pressure sensor</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Pump camshaft case</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Injector holder</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Delivery pipe and injector assembly</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Engine hanger</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Water pump and intake manifold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature sensor</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature gauge unit</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Water inlet fitting</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Thermostat housing</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Water inlet pipe</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Water pump</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Oil level gauge guide</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Intake manifold stay</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Intake manifold</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Engine hanger</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Detonation sensor (Multipoint fuel injection)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Water pump and water hose (GDI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature sensor</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Engine coolant temperature gauge unit</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Water inlet fitting</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Water outlet fitting</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Thermostat housing</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Water inlet pipe</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Water pump</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Knock sensor</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold cover</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Items</td>
<td>Nm</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Heat protector</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold (M8)</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Exhaust manifold (M10)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Water outlet fitting</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

Rocker arms and camshaft

<table>
<thead>
<tr>
<th>Items</th>
<th>Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker cover</td>
<td>3.4</td>
</tr>
<tr>
<td>Rocker arm shaft</td>
<td>31</td>
</tr>
</tbody>
</table>

Rocker arms and camshafts (GDI)

<table>
<thead>
<tr>
<th>Items</th>
<th>Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camshaft position sensor</td>
<td>8.8</td>
</tr>
<tr>
<td>Cover</td>
<td>9.8</td>
</tr>
<tr>
<td>Camshaft position sensing cylinder</td>
<td>21</td>
</tr>
<tr>
<td>Camshaft position sensing support</td>
<td>13</td>
</tr>
<tr>
<td>Beam camshaft cap</td>
<td>20</td>
</tr>
</tbody>
</table>

Cylinder head and valves

<table>
<thead>
<tr>
<th>Items</th>
<th>Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder head bolt</td>
<td>20 + 90° + 90°</td>
</tr>
</tbody>
</table>

[Tighten to 78 Nm and then completely loosen before finally tightening with above procedure.]

Front case, counterbalance shaft and oil pan

<table>
<thead>
<tr>
<th>Items</th>
<th>Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain plug</td>
<td>39</td>
</tr>
<tr>
<td>Oil pan</td>
<td>6.9</td>
</tr>
<tr>
<td>Oil level sensor (For Europe)</td>
<td>8.8</td>
</tr>
<tr>
<td>Stiffener (For Europe)</td>
<td>21</td>
</tr>
<tr>
<td>Oil screen</td>
<td>18</td>
</tr>
<tr>
<td>Oil pressure switch (4G63)</td>
<td>19</td>
</tr>
<tr>
<td>Oil pressure switch (4G64)</td>
<td>9.8</td>
</tr>
<tr>
<td>Relief plug</td>
<td>44</td>
</tr>
<tr>
<td>Oil filter bracket</td>
<td>18</td>
</tr>
<tr>
<td>Plug</td>
<td>23</td>
</tr>
<tr>
<td>Flange bolt</td>
<td>36</td>
</tr>
<tr>
<td>Oil pump cover bolt</td>
<td>16</td>
</tr>
<tr>
<td>Oil pump cover screw</td>
<td>9.8</td>
</tr>
<tr>
<td>Front case</td>
<td>23</td>
</tr>
<tr>
<td>Transmission stay (GDI engine)</td>
<td>21</td>
</tr>
<tr>
<td>Oil level gauge guide</td>
<td>12</td>
</tr>
<tr>
<td>Items</td>
<td>Nm</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Oil pan lower</td>
<td>6.9</td>
</tr>
<tr>
<td>Baffle plate</td>
<td>6.9</td>
</tr>
<tr>
<td>Oil pan upper</td>
<td>6.9</td>
</tr>
<tr>
<td>Piston and connecting rod</td>
<td></td>
</tr>
<tr>
<td>Connecting rod cap</td>
<td>20 $^\circ$ + 90$^\circ$ \rightarrow 100$^\circ$</td>
</tr>
<tr>
<td>Crankshaft, flywheel and drive plate</td>
<td></td>
</tr>
<tr>
<td>Flywheel bolt</td>
<td>132</td>
</tr>
<tr>
<td>Drive plate bolt</td>
<td>132</td>
</tr>
<tr>
<td>Rear plate</td>
<td>11</td>
</tr>
<tr>
<td>Bell housing cover</td>
<td>8.8</td>
</tr>
<tr>
<td>Oil seal case bolt</td>
<td>11</td>
</tr>
<tr>
<td>Bearing cap bolt</td>
<td>25 $^\circ$ + 90$^\circ$ \rightarrow 100$^\circ$</td>
</tr>
</tbody>
</table>
NEW TIGHTENING METHOD - BY USE OF BOLTS TO BE TIGHTENED IN PLASTIC AREA

A new type of bolts, to be tightened in plastic area, is currently used in some parts of the engine. The tightening method for the bolts is different from the conventional one. Be sure to observe the method described in the text when tightening the bolts.

Service limits are provided for the bolts. Make sure that the service limits described in the text are strictly observed.

- Areas where the bolts are in use:
 1. Cylinder head bolts
 2. Main bearing cap bolts
 3. Connecting rod cap bolts

- Tightening method
 After tightening the bolts to the specified torque, tighten them another 90° or 180° (twice 90°). The tightening method varies on different areas. Observe the tightening method described in the text.

SEALANTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Specified sealant</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cam position sensor support</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Engine coolant temperature sensor</td>
<td>3M Nut Locking Part No. 4171 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Engine coolant temperature gauge unit</td>
<td>3M ATD Part No. 8660 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Thermostat case</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Water outlet fitting</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Beam camshaft cap</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Cylinder head</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Oil pressure switch</td>
<td>3M ATD Part No. 8660 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Oil pan</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
<tr>
<td>Oil seal case</td>
<td>Mitsubishi Genuine Part No. MD970389 or equivalent</td>
<td>As required</td>
</tr>
</tbody>
</table>
FORM-IN-PLACE GASKET
The engine has several areas where the form-in-place gasket (FIPG) is in use. To ensure that the gasket fully serves its purpose, it is necessary to observe some precautions when applying the gasket. Bead size, continuity and location are of paramount importance. Too thin a bead could cause leaks. Too thick a bead, on the other hand, could be squeezed out of location, causing blocking or narrowing of the fluid feed line. To eliminate the possibility of leaks from a joint, therefore, it is absolutely necessary to apply the gasket evenly without a break, while observing the correct bead size.

The FIPG used in the engine is a room temperature vulcanisation (RTV) type and is supplied in a 100-gram tube (Part No. MD970389). Since the RTV hardens as it reacts with the moisture in the atmospheric air, it is normally used in the metallic flange areas. The FIPG, Part No. MD970389, can be used for sealing both engine oil and coolant, while Part No. MD997110 can only be used for engine oil sealing.

Disassembly
The parts assembled with the FIPG can be easily disassembled without use of a special method. In some cases, however, the sealant between the joined surfaces may have to be broken by lightly striking with a mallet or similar tool. A flat and thin gasket scraper may be lightly hammered in between the joined surfaces. In this case, however, care must be taken to prevent damage to the joined surfaces. For removal of the oil pan, the special tool “Oil Pan Remover” (MD998727) is available. Be sure to use the special tool to remove the oil pan. <Except aluminium die-cast oil pans>

Surface Preparation
Thoroughly remove all substances deposited on the gasket application surfaces, using a gasket scraper or wire brush. Check to ensure that the surfaces to which the FIPG is to be applied is flat. Make sure that there are no oils, greases and foreign substances deposited on the application surfaces. Do not forget to remove the old sealant remained in the bolt holes.

Form-in-Place Gasket Application
When assembling parts with the FIPG, you must observe some precautions, but the procedures is very simple as in the case of a conventional precut gasket.
Applied FIPG bead should be of the specified size and without breaks. Also be sure to encircle the bolt hole circumference with a completely continuous bead. The FIPG can be wiped away unless it is hardened. While the FIPG is still moist (in less than 15 minutes), mount the parts in position. When the parts are mounted, make sure that the gasket is applied to the required area only. In addition, do not apply any oil or water to the sealing locations or start the engine until a sufficient amount of time (about one hour) has passed after installation is completed.
The FIPG application procedure may vary on different areas. Observe the procedure described in the text when applying the FIPG.
2. SPECIAL TOOLS

<table>
<thead>
<tr>
<th>Tool</th>
<th>Number</th>
<th>Name</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MB990767</td>
<td>Crankshaft pulley holder</td>
<td>Holding camshaft sprocket Use with MD998719.</td>
</tr>
<tr>
<td></td>
<td>MD990938</td>
<td>Handle</td>
<td>Installation of crankshaft rear oil seal Use with MD998776.</td>
</tr>
<tr>
<td></td>
<td>MB991603</td>
<td>Silent shaft bearing puller stopper</td>
<td>Guide stopper for removal and installation of counterbalance shaft rear bearing Use with MD998372.</td>
</tr>
<tr>
<td></td>
<td>MB991654</td>
<td>Cylinder head bolt wrench (12)</td>
<td>Removal and installation of cylinder head bolt</td>
</tr>
<tr>
<td></td>
<td>MD998162</td>
<td>Plug wrench</td>
<td>Removal and installation of front case cap plug Use with MD998783.</td>
</tr>
<tr>
<td></td>
<td>MD998285</td>
<td>Crankshaft front oil seal guide</td>
<td>Guide for installation of crankshaft front oil seal Use with MD998375.</td>
</tr>
<tr>
<td></td>
<td>MD998371</td>
<td>Silent shaft bearing puller</td>
<td>Removal of counterbalance shaft front bearing</td>
</tr>
<tr>
<td></td>
<td>MD998372</td>
<td>Silent shaft bearing puller</td>
<td>Removal of counterbalance shaft rear bearing</td>
</tr>
<tr>
<td></td>
<td>MD998375</td>
<td>Crankshaft front seal installer</td>
<td>Installation of crankshaft front oil seal</td>
</tr>
<tr>
<td>Tool</td>
<td>Number</td>
<td>Name</td>
<td>Use</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>MD998440</td>
<td>Leak down tester</td>
<td>Leak down test of lash adjuster</td>
</tr>
<tr>
<td></td>
<td>MD998441</td>
<td>Lash adjuster retainer</td>
<td>Air bleeding of lash adjuster</td>
</tr>
<tr>
<td></td>
<td>MD998442</td>
<td>Lash adjuster wire</td>
<td>Air bleeding of lash adjuster</td>
</tr>
<tr>
<td></td>
<td>MD998443</td>
<td>Lash adjuster holder</td>
<td>Retainer for holding lash adjuster in rocker arm at time of removal and installation of rocker shaft assembly</td>
</tr>
<tr>
<td></td>
<td>MD998705</td>
<td>Silent shaft bearing installer</td>
<td>Installation of counterbalance shaft front and rear bearing</td>
</tr>
<tr>
<td></td>
<td>MD998713</td>
<td>Camshaft oil seal installer</td>
<td>Installation of camshaft oil seal</td>
</tr>
<tr>
<td></td>
<td>MD998719</td>
<td>Pulley holder pin</td>
<td>Holding camshaft sprocket Use with MB990767.</td>
</tr>
<tr>
<td></td>
<td>MD998727</td>
<td>Oil pan remover</td>
<td>Removal of oil pan</td>
</tr>
<tr>
<td></td>
<td>MD998735</td>
<td>Valve spring compressor</td>
<td>Removal and installation of valve and related parts</td>
</tr>
<tr>
<td>Tool</td>
<td>Number</td>
<td>Name</td>
<td>Use</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>MD998738</td>
<td></td>
<td>Set screw</td>
<td>Adjustment of timing belt tension</td>
</tr>
<tr>
<td>MD998767</td>
<td></td>
<td>Tensioner puller socket wrench</td>
<td>Adjustment of timing belt tension</td>
</tr>
<tr>
<td>MD998772</td>
<td></td>
<td>Valve spring compressor</td>
<td>Removal and installation of valve and related parts</td>
</tr>
<tr>
<td>MD998774</td>
<td></td>
<td>Valve stem seal installer</td>
<td>Installation of valve stem seal</td>
</tr>
<tr>
<td>MD998775</td>
<td></td>
<td>Valve stem seal installer</td>
<td>Installation of valve stem seal</td>
</tr>
<tr>
<td>MD998776</td>
<td></td>
<td>Crankshaft rear oil seal installer</td>
<td>Installation of crankshaft rear oil seal Use with MB990938.</td>
</tr>
<tr>
<td>MD998778</td>
<td></td>
<td>Crankshaft sprocket puller</td>
<td>Removal of crankshaft sprocket</td>
</tr>
<tr>
<td>MD998780</td>
<td></td>
<td>Piston setting tool</td>
<td>Removal and installation of piston pin</td>
</tr>
<tr>
<td>MD998781</td>
<td></td>
<td>Flywheel stopper</td>
<td>Holding of flywheel and drive plate</td>
</tr>
<tr>
<td>Tool</td>
<td>Number</td>
<td>Name</td>
<td>Use</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>MD998783</td>
<td></td>
<td>Plug wrench retainer</td>
<td>Removal and installation of front case cap plug</td>
</tr>
<tr>
<td>MD998785</td>
<td></td>
<td>Sprocket stopper</td>
<td>Holding silent shaft sprocket</td>
</tr>
</tbody>
</table>
3. ALTERNATOR AND IGNITION SYSTEM

REMOVAL AND INSTALLATION <CARBURETOR>

Removal steps
1. Drive belt
2. Water pump pulley
3. Alternator brace
4. Alternator
5. Crankshaft pulley
6. Spark plug cable
7. Spark plug
8. High tension cable
9. Distributor assembly
10. O-ring
Removal and Installation <MULTIPOINT FUEL INJECTION>

Removal steps
1. Drive belt
2. Water pump pulley
3. Alternator brace
4. Alternator
5. Crankshaft pulley
6. Spark plug cable
7. Ignition coil assembly
8. Spark plug
9. Camshaft position sensor
10. Camshaft position sensing support
11. Camshaft position sensing cylinder
Removal steps
1. Oil level gauge
2. Oil level gauge guide
3. O-ring
4. Drive belt
5. Water pump pulley
6. Alternator
7. Alternator brace
8. Idler pulley bracket
9. Idler pulley
10. Crankshaft pulley
11. Ignition coil
12. Spark plug
INSTALLATION SERVICE POINTS

A. CAMSHAFT POSITION SENSOR SUPPORT INSTALLATION

(1) Apply a 3 mm bead of form-in-place gasket (FIPG) to the area shown.

Specified sealant: Mitsubishi Genuine Part No. MD970389 or equivalent

B. DISTRIBUTOR ASSEMBLY INSTALLATION

(1) Turn the crankshaft to bring No. 1 cylinder to the top dead center on compression stroke.
(2) Align the mating marks on the distributor housing with that of the coupling key.

(3) Install the distributor assembly on the engine while aligning the stud bolt used for securing the distributor with the slot in the mounting flange of the distributor.
3a. INTAKE MANIFOLD (GDI)
REMOVAL AND INSTALLATION (SPACE WAGON)

Removal steps
1. Vacuum pipe and hose
 (1999 model vehicles for Hong Kong)
2. Solenoid valve (1999 model vehicles for Hong Kong)
3. Vacuum pipe and hose
 (Vehicles for Europe and 2000 model vehicles for Hong Kong)
4. Solenoid valve
 (Vehicles for Europe and 2000 model vehicles for Hong Kong)
5. Vacuum pipe
6. Throttle body

7. Throttle body gasket
8. Intake manifold stay
9. Air intake plenum resonator
10. Gasket
11. Water hose
12. EGR valve
13. Gasket
14. Hose clamp
15. EGR support
16. Gasket
17. Gasket
18. Intake manifold
19. Gasket
Removal steps
1. Vacuum pipe and hose
2. Solenoid valve
3. Throttle body
4. Throttle body gasket
5. Intake manifold stay
6. Air intake plenum resonator
7. Gasket
8. Water hose
9. EGR valve
10. Gasket
11. Hose clamp
12. EGR support
13. Gasket
14. Gasket
15. Intake manifold
16. Gasket
INSTALLATION SERVICE POINTS

➢ A ➢ EGR SUPPORT / HOSE CLAMP / GASKET INSTALLATION

(1) Install the gasket, EGR support and hose clamp to the cylinder head in that order and tighten the fasteners temporarily.
(2) Install the EGR support assembly to the intake manifold with the gasket attached on the mating surface, and tighten the fasteners to the specified torque.
(3) Tighten the fasteners on the cylinder head side to the specified torque.

➢ B ➢ AIR INTAKE PLENUM RESONATOR INSTALLATION

(1) Install the mounting bolts on the throttle body side without fail.

➢ C ➢ INTAKE MANIFOLD STAY INSTALLATION

(1) Tighten the fasteners to the specified torque after confirming that the intake manifold stay is in close contact with the air intake plenum resonator and the cylinder block.

➢ D ➢ THROTTLE BODY GASKET INSTALLATION

(1) Position the projection as shown in the illustration.
4. TIMING BELT

REMOVAL AND INSTALLATION (SOHC)

Removal steps
1. Timing belt front upper cover
2. Timing belt front lower cover
3. Power steering bracket
4. Crankshaft position sensor (Multipoint fuel injection)
5. Timing belt
6. Tensioner pulley
7. Tensioner arm
8. Auto tensioner
9. Idler pulley
10. Oil pump sprocket
11. Crankshaft bolt
12. Crankshaft sprocket
13. Flange (Multipoint fuel injection)
14. Flange (Carburetor)
15. Tensioner "B"
16. Timing belt "B"
17. Counterbalance shaft sprocket
18. Spacer
19. Crankshaft sprocket "B"
20. Engine support bracket
21. Camshaft sprocket bolt
22. Camshaft sprocket
23. Timing belt rear cover
Removal steps

1. Front upper cover
2. Front lower cover
3. Power steering pump bracket stay
4. Power steering bracket
5. Timing belt
6. Tensioner pulley
7. Tensioner arm
8. Auto tensioner
9. Idle pulley
10. Crankshaft position sensor
11. Oil pump sprocket
12. Crankshaft bolt
13. Crankshaft sprocket
14. Flange
15. Tensioner B
16. Timing belt B
17. Counterbalance shaft sprocket
18. Spacer
19. Crankshaft sprocket B
20. Crankshaft key
21. Breather hose
22. PCV hose
23. PCV valve
24. PCV valve gasket
25. Oil filler cap
26. Rocker cover
27. Rocker cover gasket
28. Engine support bracket
29. Camshaft sprocket bolt
30. Camshaft sprocket
31. Timing belt rear right cover
32. Timing belt rear left upper cover
33. Timing belt rear left lower cover
REMOVAL SERVICE POINTS

◆A◆ TIMING BELT REMOVAL

(1) Mark belt running direction for reinstallation.

NOTE
(1) Water or oil on the belt shorten its life drastically, so the removed timing belt, sprocket, and tensioner must be free from oil and water. These parts should not be washed. Replace parts if seriously contaminated.
(2) If there is oil or water on each part, check front case oil seals, camshaft oil seal and water pump for leaks.

◆B◆ TIMING BELT REMOVAL

(1) If the timing belt is to be reused, chalk an arrow mark on the back surface of the belt so that the belt can be reinstalled in the same direction.
(2) Place the exhaust camshaft sprocket in a position where the timing mark for No. 1 cylinder is positioned about one tooth before the top dead center of the compression stroke.

Caution
• The camshaft sprocket on the exhaust side can turn very easily because of the valve spring tension. Use care not to allow your fingers to get caught by the sprocket.
(3) Loosen the lock nut of the tensioner pulley, then remove the timing belt.

◆C◆ OIL PUMP SPROCKET REMOVAL

(1) Remove the plug on the left side of cylinder block.
(2) Insert a screwdriver (shank diameter 8 mm) to block the counterbalance shaft.
(3) Remove the nut.
(4) Remove the oil pump sprocket.
<D> CRANKSHAFT BOLT LOOSENING

1. Hold the drive plate with the special tool as shown.
2. Remove the crankshaft bolt.

<E> CRANKSHAFT SPROCKET REMOVAL

1. If it is difficult to remove the sprocket, use the special tool.

<F> TIMING BELT “B” REMOVAL

1. Make a mark on the back of the timing belt indicating the direction of rotation so it may be reassembled in the same direction if it is to be reused.

NOTE

1. Water or oil on the belt shortens its life drastically, so the removed timing belt, sprocket, and tensioner must be free from oil and water. These parts should not be washed. Replace parts if seriously contaminated.
2. If there is oil or water on each part check front case oil seals, camshaft oil seal and water pump for leaks.

<G> COUNTERBALANCE SHAFT SPROCKET REMOVAL

1. Set the special tool as shown to prevent the counterbalance shaft sprocket from turning together.
2. Loosen the bolt and remove the sprocket.
CRANKSHAFT SPROCKET “B” REMOVAL

(1) If it is difficult to remove the sprocket, use the special tool.

CAMSHAFT SPROCKET BOLT LOOSENING

(1) Using the special tools shown in the illustration, lock the camshaft sprocket in position.
(2) Loosen the camshaft bolt.

CAMSHAFT SPROCKET BOLT LOOSENING

(1) Use a wrench to hold the hexagonal part of the camshaft, and then remove the camshaft sprocket mounting bolt.

INSTALLATION SERVICE POINTS

CAMSHAFT SPROCKET BOLT TIGHTENING

(1) Using the special tools shown in the illustration, lock the camshaft sprocket in position.
(2) Tighten the camshaft sprocket bolt to the specified torque.

CAMSHAFT SPROCKET BOLT TIGHTENING

(1) Using a wrench, hold the camshaft at its hexagon and tighten the bolt to the specification.
C ENGINE SUPPORT BRACKET INSTALLATION
(1) Coat the bolts illustrated with sealant before tightening.

Specified sealant: 3M ATD Part No. 8660 or equivalent

D SPACER INSTALLATION
(1) Install the spacer with the chamfered end toward the oil seal.

E COUNTERBALANCE SHAFT SPROCKET INSTALLATION
(1) Install the counterbalance shaft sprocket and screw the bolt.
(2) Install special tool MD998785 as shown in the illustration to lock the counterbalance shaft.
(3) Tighten the bolt, and then remove the special tool.

F TIMING BELT “B” INSTALLATION
(1) Align timing marks on the crankshaft sprocket “B” and counterbalance shaft sprocket with the marks on the front case respectively.
(2) Install the timing belt “B” on the crankshaft sprocket “B” and counterbalance shaft sprocket. There should be no slack on the tension side.
(3) Make sure that the relationship between the tensioner pulley center and the bolt center is as shown in the illustration.
(4) Move the tensioner “B” in the direction of arrow while lifting with a finger to give a sufficient tension to the tension side of timing belt. In this condition, tighten bolt to secure tensioner “B”. When the bolt is tightened, use care to prevent shaft from turning together. If shaft is turned together, belt will be overtensioned.

(5) Check to ensure that timing marks on sprockets and front case are in alignment.

(6) Press with index finger the center of span on the tension side of timing belt “B”. The bolt must deflect 5 - 7 mm.

G CRANKSHAFT BOLT TIGHTENING

(1) Using the special tool, hold the flywheel or drive plate.

(2) Install the crankshaft pulley in position.

H OIL PUMP SPROCKET INSTALLATION

(1) Insert a Phillips screwdriver (shank diameter 8 mm shaft) through the plug hole on the left side of the cylinder block to block the left counterbalance shaft.

(2) Install the oil pump sprocket.

(3) Apply a proper amount of engine oil to the bearing surfaces of the nuts.

(4) Tighten the nuts to the specified torque.

I AUTO TENSIONER INSTALLATION

(1) If the auto tensioner rod is in its fully extended position, reset it as follows.

(2) Clamp the auto-tensioner in the vise with soft jaws.

(3) Push in the rod little by little with the vise until the set hole A in the rod is aligned with the hole B in the cylinder.
(4) Insert a wire (1.4 mm in diameter) into the set holes.
(5) Unclamp the auto tensioner from the vise.

(6) Install the auto tensioner to front case and tighten to the specified torque.

Caution
- Leave the wire installed in the auto tensioner.

J TENSIONER PULLEY INSTALLATION

(1) Install the tensioner pulley in such direction that its two small holes are arranged vertically.

K TIMING BELT INSTALLATION

(1) Check that the timing belt tensioner and spring have been installed in position. (See **J**)
(2) Align timing mark on camshaft sprocket with timing mark on cylinder head.

(3) Align timing mark on crankshaft sprocket with timing mark on front case.
(4) Align the timing mark on oil pump sprocket with its mating mark.

(5) Remove the plug on cylinder block and insert a Phillips screwdriver (shank diameter 8 mm) through the hole (Engine with counterbalance shafts). If it can be inserted as deep as 60 mm or more, the timing marks are correctly aligned. If the inserted depth is only 20 - 25 mm, turn the oil pump sprocket one turn and realign timing marks. Then check to ensure that the screwdriver can be inserted 60 mm or more. Keep the screwdriver inserted until installation of timing belt is finished.

(6) Install the timing belt on the crankshaft sprocket, idler pulley, camshaft sprocket, and tensioner pulley in that order.

(7) Lift up the tensioner pulley in the direction of arrow and tighten the center bolt.

(8) Check that all timing marks are lined up.

(9) Remove the screwdriver inserted in step (5) and fit the plug.

(10) Give the crankshaft a quarter counterclockwise turn. Then, turn it clockwise until the timing marks are lined up again.

(11) Install the special tools, Socket Wrench and Torque Wrench, on the tensioner pulley, and loosen the tensioner pulley center bolt.

 NOTE
 If the special tool is not available, use a commercially available torque wrench that is capable of measuring 0 - 5 Nm.

(12) Torque to 3.5 Nm with the torque wrench.

(13) Holding the tensioner pulley with the special tool and torque wrench, tighten the center bolt to specification.
(14) After giving two clockwise turns to the crankshaft, let it alone for approx. 15 minutes. Then, make sure that the auto tensioner setting wire moves freely.

NOTE
If the wire does not move freely, repeat step (10) above until it moves freely.

(15) Remove the auto tensioner setting wire.

(16) Measure the distance “A” (between the tensioner arm and auto tensioner body).

Standard value: 3.8 - 4.5 mm

TIMING BELT INSTALLATION

(1) Place the exhaust side camshaft sprocket in a position where its timing mark is one tooth offset from the timing mark on the rocker cover in the counterclockwise direction.

NOTE
Even if the timing marks on the sprocket and the rocker cover are brought into alignment, the exhaust camshaft is forced back by the valve spring tension. It is stabilized at a position one tooth before the timing mark.

(2) Align the timing mark on the intake side camshaft sprocket with that on the rocker cover.

NOTE
Even if the timing marks on the sprocket and the cover are brought into alignment, the intake camshaft is forced to turn one tooth in the clockwise direction by the valve spring tension and stabilized there.

(3) Place the timing mark on the crankshaft sprocket one tooth this side from the mated timing mark as in the case of the camshaft sprocket.
(4) Align the timing mark on oil pump sprocket with its mating mark.

(5) Remove the plug on cylinder block and insert a Phillips screwdriver (shank diameter 8 mm) through the hole (Engine with counterbalance shafts). If it can be inserted as deep as 60 mm or more, the timing marks are correctly aligned. If the inserted depth is only 20 - 25 mm, turn the oil pump sprocket one turn and realign timing marks. Then check to ensure that the screwdriver can be inserted 60 mm or more. Keep the screwdriver inserted until installation of timing belt is finished.

(6) Remove the Phillips screwdriver. Place the oil pump sprocket in a position where its timing mark is one tooth offset from the mated timing mark in the counterclockwise direction.

(7) Fit the timing belt over the exhaust side camshaft sprocket, and secure it at the illustrated position using a paper clip.

(8) Turn the intake side camshaft sprocket as shown to a position where its timing mark is one tooth offset from the mated timing mark in the counterclockwise direction. Then, fit the timing belt over the sprocket and secure it with a paper clip.

NOTE
The intake camshaft will be turned a little clockwise by the valve spring tension and stabilized in position even if the belt is clipped at one tooth offset position.
(9) Check to ensure that the timing marks on the intake camshaft sprocket side are in alignment when the exhaust camshaft sprocket is turned clockwise to align the timing marks.

NOTE
The timing belt span between the intake and exhaust sprockets will have 17 cogs.

(10) Fit the timing belt over the idler pulley, oil pump sprocket and crankshaft sprocket in this order.

NOTE
Be careful that the belt does not become slack.

(11) Fit the timing belt over the tensioner pulley.

NOTE
When fitting the timing belt over the tensioner pulley, turn the intake side camshaft sprocket a little counterclockwise, as this will facilitate the work.

(12) Turn the crankshaft pulley a little in the illustrated direction to pull up the timing belt at the idler pulley side.

(13) Check to ensure that the timing marks on the crankshaft sprocket, oil pump sprocket and exhaust camshaft sprocket are all offset one tooth from the corresponding timing marks in the counterclockwise direction.

(14) Using the special tool, turn the tensioner pulley in the illustrated direction to strain the timing belt. Then, secure the tensioner temporarily by tightening the retaining bolt lightly.

NOTE
There must be no slack in the timing belt between the intake and exhaust camshafts.

(15) Turn the crankshaft to align the timing mark with the mark for No. 1 cylinder top dead center in the compression stroke.
(16) Set the special tool as shown and screw it in up to the position where the wire inserted in the auto-tensioner when installing it can be moved lightly.

(17) Loosen the retaining bolt of the tensioner pulley.

Caution
- Loosening the retaining bolt can cause the intake and exhaust camshafts to turn, resulting in slackened timing belt. Use care that the timing belt does not come off the sprockets at this time.

(18) Pull up the slack of the timing belt by turning the tensioner in illustrated direction using the special tool and a torque wrench (0 - 5 Nm).

(19) From this position, turn back the tensioner until the torque wrench reading becomes 3.5 Nm, then secure it by tightening the retaining bolt.

(20) Remove the special tool attached in step (16).

(21) Rotate the crankshaft clockwise 2 turns. Then, leave it intact 15 minutes.

(22) Check to see that the wire inserted when installing the auto-tensioner can be pulled out lightly. If it can be pulled out lightly, the timing belt is being tensioned properly. If so, remove the wire. In addition, check that the rod protrusion from the auto-tensioner meets the standard value, which is also an indication of properly tensioned timing belt.

Standard value: 3.8 - 4.5 mm

(23) If the wire cannot be removed with a light force, repeat steps (16) through (21) until the proper belt tensioner is obtained.

INSPECTION

TIMING BELT

Replace belt if any of the following conditions exist.

(1) Hardening of back rubber.
 Back side is glossy without resilience and leaves no indent when pressed with fingernail.
(2) Cracks on rubber back.
(3) Cracks or peeling of canvas.
(4) Cracks on rib root.
(5) Cracks on belt sides.

(6) Abnormal wear of belt sides. The sides are normal if they are sharp as if cut by a knife.

(7) Abnormal wear on teeth.
(8) Missing tooth.

AUTO TENSIONER

(1) Check the auto tensioner for possible leaks and replace as necessary.
(2) Check the rod end for wear or damage and replace as necessary.
(3) Measure the rod protrusion. If it is out of specification, replace the auto tensioner.

Standard value: 12 mm

(4) Press the rod with a force of 98 to 196 N and measure its protrusion.
(5) If the measured value is 1 mm or more shorter than the value obtained in step (3), replace the auto tensioner.
4a. EXHAUST MANIFOLD (GDI)

REMOVAL AND INSTALLATION

Removal steps
1. Exhaust manifold cover (Vehicle for Europe)
2. Exhaust manifold (Vehicle for Europe)
3. Exhaust manifold (Vehicle for Hong Kong)
4. Exhaust manifold gasket
5. Engine hanger
5. FUEL AND EMISSION CONTROL PARTS

REMOVAL AND INSTALLATION <CARBURETOR>

Removal steps
1. Fuel hose
2. Fuel hose
3. Fuel vapor separator
4. Water hose
5. Carburetor
6. Gasket
7. EGR valve (For GCC)
8. Gasket (For GCC)
Removal steps

1. Throttle body
2. Throttle body gasket
3. EGR valve (With EGR valve)
4. Cover (Without EGR valve)
5. EGR valve gasket
6. Injectors and delivery pipe
7. Insulator
8. Fuel pressure regulator
9. O-ring
10. Insulator
11. Injectors
12. O-ring
13. Grommet
14. Delivery pipe
REMOVAL AND INSTALLATION
<MULTIPOINT FUEL INJECTION - SPACE WAGON>

Removal steps
1. Throttle body
2. Throttle body gasket
3. EGR valve
4. EGR valve gasket
5. Fuel hose
6. Fuel return pipe
7. Injectors and delivery pipe
8. Insulator
9. Fuel pressure regulator
10. O-ring
11. Insulator
12. Injectors
13. O-ring
14. Grommet
15. Delivery pipe
INSTALLATION SERVICE POINTS

A - INJECTORS INSTALLATION
(1) Before installing an injector, the rubber O-ring must be lubricated with a drop of clean engine oil to aid in installation.
(2) Install injector top end. Be careful not to damage O-ring during installation.

B - FUEL PRESSURE REGULATOR INSTALLATION
(1) Apply a small amount of new engine oil to the O-ring. Insert the fuel pressure regulator into the delivery pipe being careful not to damage the O-ring.
 Caution
 • Be sure not to let engine oil get into the delivery pipe.
(2) Check that the fuel pressure regulator turns smoothly. If it does not turn smoothly, the O-ring may be trapped. Remove the fuel pressure regulator and check the O-ring for damage, and then re-insert it into the delivery pipe and check once again.

C - GASKET INSTALLATION
(1) Position the projection as shown in the illustration.
5a. FUEL PART (GDI)
REMOVAL AND INSTALLATION (1999 MODEL SPACE WAGON)
Removal steps
1. Fuel hose
2. Fuel low pressure pipe
3. O-ring
4. Fuel pump return nipple
5. O-ring
6. Clamp A
7. Fuel pipe bracket
8. Fuel feed pipe
9. Backup ring
10. O-ring
11. Backup ring
12. Fuel pump
13. O-ring
14. Harness bracket
15. Fuel return pipe
16. Backup ring
17. O-ring
18. Backup ring
19. Fuel high pressure regulator
20. Fuel pressure sensor
21. Backup ring
22. O-ring
23. Pump camshaft case
24. O-ring
25. O-ring
26. Injector harness
27. Washer
28. Injector holder
29. Delivery pipe and injector assembly
30. Insulator
31. Injector washer
32. Injector
33. Corrugated washer
34. Backup ring
35. O-ring
36. Backup ring
37. Delivery pipe
38. Engine hanger
REMOVAL AND INSTALLATION (2000 MODEL SPACE WAGON and GALANT)
Removal steps

1. Fuel hose
2. Fuel low pressure pipe
3. O-ring
4. Fuel pump return nipple
5. O-ring
6. Clamp A
7. Fuel pipe bracket
8. Fuel feed pipe
9. Backup ring
10. O-ring
11. Backup ring
12. Fuel pump
13. O-ring
14. Harness bracket
15. Fuel return pipe
16. Backup ring
17. O-ring
18. Backup ring
19. Fuel high pressure regulator
20. Fuel pressure sensor (GALANT and SPACE WAGON for Hong Kong)
21. Backup ring (GALANT and SPACE WAGON for Hong Kong)
22. O-ring (GALANT and SPACE WAGON for Hong Kong)
23. Flange (SPACE WAGON for Europe)
24. Fuel pressure sensor (SPACE WAGON for Europe)
25. Backup ring (SPACE WAGON for Europe)
26. O-ring (SPACE WAGON for Europe)
27. Pump camshaft case
28. O-ring
29. O-ring
30. Injector harness
31. Washer
32. Injector holder
33. Delivery pipe and injector assembly
34. Insulator
35. Injector washer
36. Injector
37. Corrugated washer
38. Backup ring
39. O-ring
40. Backup ring
41. Delivery pipe
42. Engine hanger
INSTALLATION SERVICE POINTS

A—BACKUP RING / CORRUGATED WASHER INSTALLATION

(1) Attach the backup ring and O-ring to the injector. The thicker backup ring must be so installed that the inside cut surface is directed as shown in the illustration.

(2) Coat the corrugated washer with white vaseline and install it to the injector as shown.

Caution
- Always replace the corrugated washer with new one. Reused corrugated washer can cause fuel or gas leaks.

B—DELIVERY PIPE AND INJECTOR ASSEMBLY INSTALLATION

(1) Lubricate O-ring in the injector with spindle oil gasoline.
(2) Insert the injector straight into the injector mounting hole in the delivery pipe.
(3) Turn the injector clockwise and counterclockwise. If it does not rotate smoothly, remove it to check for damaged O-ring. Damaged O-ring must be replaced with a new one. Reinstall the injector and check for smooth rotation again.
(4) Align the mating mark on the injector with that on the delivery pipe.
(5) Install the injector gaskets and insulators on the cylinder head. The insulator can drop off easily. Apply vaseline to it before installation so that it may be held in position.
(6) Install the delivery pipe and injector assembly onto the cylinder head, tighten the fasteners temporarily.
(7) Install the injector holders and the washers to the assembly and tighten the fasteners to the specified torque.

Caution
- Strictly observe the specified torque.

(8) Tighten the fasteners of the delivery pipe and injector assembly to the specified torque in the order given in the illustration.
C. PUMP CAMSHAFT CASE INSTALLATION

1. Lubricate the O-ring (smaller one for oil passage) with vaseline and install it in the pump camshaft case.
2. Apply small amount of engine oil to the O-ring (larger one) in the case.
3. Install the pump camshaft case onto the cylinder head while aligning its coupling with the groove in the camshaft end.

NOTE

The key of the coupling and the groove in the camshaft end are both arranged offset with respect to the camshaft center.

4. Tighten the pump camshaft case mounting bolts to the specified torque.

D. FUEL PRESSURE SENSOR INSTALLATION

1. Install the backup ring to the fuel pressure sensor with its inside cut surface in the illustrated direction.
2. Install the fuel pressure sensor straight into the fuel pressure regulator with labeled surface upward.
3. Tighten the fuel pressure sensor mounting bolt to the specified torque.

E. FUEL HIGH PRESSURE REGULATOR / FUEL RETURN PIPE INSTALLATION

1. Install the fuel high pressure regulator on the pump camshaft case and tighten the 3 bolts lightly (with somewhat larger torque than finger tight). Tightening to the specification is to be carried out in the step described in **F**.
2. Fit the backup rings and the O-ring on both ends of the fuel return pipe. Note that the larger backup ring must be installed with the inside cut surface in the direction shown in the illustration.
3. Lubricate the O-rings on both ends of the pipe with spindle oil or gasoline.
4. Insert the fuel return pipe ends straight in the respective mounting holes of the pressure regulator and the delivery pipe. Be sure to insert the pipe fully to the stop using care not to twist it.
5. Tighten the bolts at both ends of the pipe to the specified torque.
FUEL PUMP / FUEL FEED PIPE INSTALLATION

1. Insert the fuel pump into the mounting hole in the pump camshaft case, and secure it temporarily with 4 bolts (tighten somewhat with a larger torque than finger tight).
2. Fit the backup rings and the O-ring on both ends of the feed pipe. Note that the larger backup ring must be installed with the inside cut surface in the direction shown in the illustration.
3. Lubricate the O-rings on both ends of the pipe with spindle oil or gasoline.
4. Insert the fuel feed pipe ends straight in the respective mounting holes of the fuel and the delivery pipe. Be sure to insert the pipe fully to the stop using care not to twist it.
5. Tighten the bolts at ends of the pipe to the specified torque.
6. Tighten the mounting bolts of the fuel pressure regulator to the specified torque.

(7) Using a torque wrench having the minimum scale of 0.5 Nm, tighten the fuel pump mounting bolts in the following order.
 1) Tighten the bolts to 4.9 Nm in the order given in the illustration.
 2) Tighten the bolts to 17 Nm in the order given in the illustration. The torque variation among 4 bolts must be within 2 Nm.

Caution
- Strictly observe the specified tightening torque. Deviation from the specification can cause problems such as leakage or the like.

(8) Clamp the fuel return pipe and feed pipe using the fuel pipe bracket and clamp A, and tighten them lightly.
(9) Secure the fuel pipe bracket to the cam cap temporarily.
(10) Tighten the bolts which are securing the pipes temporarily to the specified torque.
(11) Tighten the bolts on the beam cam shaft side which have been temporarily tightened to the specified torque.
6. WATER PUMP AND INTAKE MANIFOLD
REMOVAL AND INSTALLATION <CARBURETOR>

Removal steps
1. Water hose
2. Water hose
3. Engine coolant temperature gauge unit
4. Water inlet fitting
5. Thermostat
6. Thermostat housing
7. Water inlet pipe
8. O-ring
9. Water pump
10. Water pump gasket
11. Oil level gauge
12. Oil level gauge guide
13. O-ring
14. Intake manifold stay
15. Intake manifold
16. Intake manifold gasket
17. Engine hanger
Removal steps

1. Water hose
2. Water hose
3. Engine coolant temperature sensor
4. Engine coolant temperature gauge unit
5. Water inlet fitting
6. Thermostat
7. Thermostat housing
8. Water inlet pipe
9. O-ring
10. Water pump
11. Water pump gasket
12. Oil level gauge
13. Oil level gauge guide
14. O-ring
15. Intake manifold stay
16. Intake manifold
17. Intake manifold gasket
18. Engine hanger
19. Detonation sensor
REMOVAL AND INSTALLATION
<MULTIPOINT FUEL INJECTION - SPACE WAGON>

Removal steps
1. Water hose
2. Water hose
3. Water hose
 ▲D▲ 4. Engine coolant temperature sensor
 ▲C▲ 5. Engine coolant temperature gauge unit
 6. Water inlet fitting
 7. Thermostat
 ▲B▲ 8. Thermostat housing
 ▲A▲ 9. Water inlet pipe
 ▲A▲ 10. O-ring
 11. Water pump
 12. Water pump gasket
 13. Oil level gauge
 14. Oil level gauge guide
 15. O-ring
 16. Intake manifold stay
 17. Intake manifold
 18. Intake manifold gasket
 19. Engine hanger
INSTALLATION SERVICE POINTS

▸A◂ WATER PIPE / O-RING INSTALLATION

(1) Wet the O-ring (with water) to facilitate assembly.

Caution
- Keep the O-ring free of oil or grease.

▸B◂ SEALANT APPLICATION TO THERMOSTAT HOUSING

Specified sealant:
- Mitsubishi Genuine Part No. MD970389 or equivalent

NOTE
- (1) Be sure to install the housing quickly while the sealant is wet (within 15 minutes).
- (2) After installation, keep the sealed area away from the oil and coolant for approx. 1 hour.

▸C◂ SEALANT APPLICATION TO ENGINE COOLANT TEMPERATURE GAUGE UNIT

Specified sealant: 3M ATD Part No. 8660 or equivalent

▸D◂ SEALANT APPLICATION TO ENGINE COOLANT TEMPERATURE SENSOR

Specified sealant:
- 3M Nut Locking Part No. 4171 or equivalent
6a. WATER PUMP AND WATER HOSE (GDI)
REMOVAL AND INSTALLATION

Removal steps
1. Water hose
2. Water hose
3. Engine coolant temperature sensor
4. Engine coolant temperature gauge unit
5. Water inlet fitting
6. Thermostat
7. Water outlet fitting
8. Thermostat housing
9. O-ring
10. Water inlet pipe
11. Water pump
12. Gasket
13. Knock sensor
INSTALLATION SERVICE POINTS

A. O-RING / WATER INLET PIPE INSTALLATION
(1) Replace the O-ring of the water inlet pipe, and then apply water to the O-ring to make installation easy.

Caution
- Never apply any oil or grease to the O-ring.
- Secure the water pipe after the thermostat case has been reinstalled.

B. THERMOSTAT CASE INSTALLATION
(1) Apply 3 mm diameter of Form-In-Place Gasket (FIPG) to the location shown in the illustration.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent

C. WATER OUTLET FITTING INSTALLATION
(1) Apply 3 mm diameter of Form-In-Place Gasket (FIPG) to the location shown in the illustration.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent

D. ENGINE COOLANT TEMPERATURE GAUGE UNIT INSTALLATION
(1) Apply the specified sealant to the threads.

Specified sealant:
3M ATD Part No. 8660 or equivalent

E. ENGINE COOLANT TEMPERATURE SENSOR INSTALLATION
(1) When reusing the sensor, apply the specified sealant to the threads.

Specified sealant:
3M Nut Locking Part No. 4171 or equivalent
7. EXHAUST MANIFOLD
REMOVAL AND INSTALLATION (GALANT)

Removal steps

1. Water outlet fitting
2. Heat protector (Multipoint fuel injection)
3. Exhaust manifold cover (Carburetor)
4. Engine hanger
5. Exhaust manifold
6. Exhaust manifold gasket
Removal steps

1. Water outlet fitting
2. Exhaust manifold cover
3. Engine hanger
4. Exhaust manifold
5. Exhaust manifold gasket

Installation service points

Sealant application to water outlet fitting

Specifications:
- Mitsubishi Genuine Part No. MD970389 or equivalent

Note:
1. Be sure to install the water outlet fitting quickly while the sealant is wet (within 15 minutes).
2. After installation, keep the sealed area away from the oil and coolant for approx. 1 hour.
8. ROCKER ARMS AND CAMSHAFT

REMOVAL AND INSTALLATION

Apply engine oil to all moving parts before installation.

Removal steps
1. Breather hose
2. P.C.V. hose
3. Oil filler cap
4. Rocker cover
5. Rocker cover gasket
6. Oil seal
7. Oil seal
8. Rocker arms and rocker arm shaft
9. Rocker arms and rocker arm shaft
10. Rocker shaft spring
11. Rocker arm A
12. Rocker arm B
13. Rocker arm shaft (Intake side)
14. Lash adjuster
15. Rocker arm C
16. Rocker arm shaft (Exhaust side)
17. Lash adjuster
18. Camshaft
REMOVAL SERVICE POINT

▶A ROCKER ARMS AND ROCKE ARM SHAFT INSTALLATION

Caution
- If the lash adjuster is re-used, clean the lash adjuster. (Refer to 11A-8-3.)

(1) Set special tool MD998443 to prevent the lash adjuster from coming free and falling to the floor.

INSTALLATION SERVICE POINTS

▶A LASH ADJUSTER INSTALLATION

(1) Insert the lash adjuster to rocker arm, being careful not to spill the diesel fuel. Then use the special tool to prevent adjuster from falling while installing it.

Caution
- If the lash adjuster is re-used, clean the lash adjuster. (Refer to 11A-8-3.)

▶B ROCKERSHIFT SPRING / ROCKE ARMS AND ROCKE ARM SHAFT INSTALLATION

(1) Temporarily tighten the rocker shaft with the bolt so that all rocker arms on the inlet valve side do not push the valves.

(2) Fit the rocker shaft spring from the above and position it so that it is right angles to the plug guide.

NOTE
Install the rocker shaft spring before installing the exhaust side rocker arms and rocker arm shaft.

(3) Remove the special tool for securing the lash adjuster.

(4) Make sure that the notch in the rocker arm shaft is in the direction as illustrated.

▶C CAMSHAFT OIL SEAL INSTALLATION
INSPECTION

CAMSHAFT

(1) Measure the cam height.

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GALANT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>37.39</td>
<td>36.89</td>
</tr>
<tr>
<td>Exhaust</td>
<td>37.14</td>
<td>36.64</td>
</tr>
<tr>
<td>SPACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>37.39</td>
<td>36.89</td>
</tr>
<tr>
<td>Exhaust</td>
<td>36.83</td>
<td>36.33</td>
</tr>
<tr>
<td>WAGON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROCKER ARM

(1) Check the roller surface. If any dents, damage or seizure is evident, replace the rocker arm.
(2) Check rotation of the roller. If it does not rotate smoothly or if looseness is evident, replace the rocker arm.
(3) Check the inside diameter. If damage or seizure is evident, replace the rocker arm.

LASH ADJUSTERS

Caution
- The lash adjusters are precision-engineered mechanisms. Do not allow them to become contaminated by dirt or other foreign substances.
- Do not attempt to disassemble the lash adjusters.
- Use only fresh diesel fuel to clean the lash adjusters.

(1) Prepare three containers and approximately five liters of diesel fuel. Into each container, pour enough diesel fuel to completely cover a lash adjuster when it is standing upright. Then, perform the following steps with each lash adjuster.

(2) Place the lash adjuster in container A and clean its outside surface.

NOTE
Use a nylon brush if deposits are hard to remove.
(3) Fit special tool MD998441 onto the lash adjuster.

(4) While gently pushing down the internal steel ball using special tool MD998442, move the plunger through 5 to 10 strokes until it slides smoothly. In addition to eliminating stiffness in the plunger, this operation will remove dirty oil.

Caution
- The steel ball spring is extremely weak, so the lash adjuster’s functionality may be lost if the air bleed wire is pushed in hard.

NOTE
If the plunger remains stiff or the mechanism appears otherwise abnormal, replace the lash adjuster.

(5) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

(6) Fit special tool MD998441 onto the lash adjuster.

(7) Place the lash adjuster in container B. Then, gently push down the internal steel ball using special tool MD998442 and move the plunger through 5 to 10 strokes until it slides smoothly. This operation will clean the lash adjuster’s pressure chamber.

Caution
- The steel ball spring is extremely weak, so the lash adjuster’s functionality may be lost if the air bleed wire is pushed in hard.

(8) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.
(9) Place the lash adjuster in container C. Then, gently push down the internal steel ball using special tool MD998442.

Caution
- Do not use container C for cleaning. If cleaning is performed in container C, foreign matter could enter the pressure chamber when the chamber is filled with diesel fuel.

(10) Stand the lash adjuster with its plunger at the top, then push the plunger downward firmly until it moves through its greatest possible stroke. Return the plunger slowly, then release the steel ball and allow the pressure chamber to fill diesel fuel.

(11) Remove special tool MD998441.

(12) Remove the lash adjuster from the container, then stand the lash adjuster with its plunger at the top. Push the plunger firmly and check that it does not move. Also, check that the lash adjuster’s height matches that of a new lash adjuster.

NOTE
If lash adjuster contracts, perform the operations (9) through (12) again to fill it with diesel fuel completely. Replace the lash adjuster if it still contracts after performing these steps.

(13) Set the lash adjuster on the special tool MD998440 (leak down tester).

(14) After the plunger has moved downward slightly (0.2 to 0.5 mm), measure the time taken for it to move downward by a further 1 mm.

Standard value:
3 - 20 seconds/1 mm [with diesel fuel at 15 - 20°C (59 - 68°F)]

NOTE
Replace the lash adjuster if the time measurement is out of specification.
(15) Fit special tool MD998441 onto the lash adjuster.
(16) Place the lash adjuster in container C again, then gently push down the internal steel ball using special tool MD998442.
(17) Stand the lash adjuster with its plunger at the top, then push the plunger downward firmly until it moves through its greatest possible stroke. Return the plunger slowly, then release the steel ball and allow the pressure chamber to fill with diesel fuel.
(18) Remove special tool MD998441.
(19) Remove the lash adjuster from the container, then stand the lash adjuster with its plunger at the top. Push the plunger firmly and check that it does not move. Also, check that the lash adjuster’s height matches that of a new lash adjuster.

NOTE
If lash adjuster contracts, perform the operations (15) through (19) again to fill it with diesel fuel completely. Replace the lash adjuster if it still contracts after performing these steps.
(20) Stand the lash adjuster upright to prevent diesel fuel spilling out. Do not allow the lash adjuster to become contaminated by dirt or other foreign matter. Fit the lash adjuster onto the engine as soon as possible.
8a. ROCKER ARMS AND CAMSHAFTS (GDI)

REMOVAL AND INSTALLATION

Removal steps
1. Camshaft position sensor
2. Cover
3. Gasket
4. Camshaft position sensing cylinder
5. Camshaft position sensing cylinder support
6. Oil seal
7. Beam camshaft cap
8. Beam camshaft cap gasket
9. Intake camshaft
10. Exhaust camshaft
11. Rocker arm
12. Lash adjuster

Apply engine oil to all moving parts before installation.
REMOVAL SERVICE POINTS

A LASH ADJUSTER REMOVAL

Caution
- If the lash adjuster is re-used, clean the lash adjuster. (Refer to 11A-8a-4.)

INSTALLATION SERVICE POINTS

A LASH ADJUSTER INSTALLATION

Caution
- If the lash adjuster is re-used, clean the lash adjuster. (Refer to 11A-8a-4.)

1. Fit the lash adjuster onto the rocker arm without allowing diesel fuel to spill out.

B BEAM CAMSHAFT CAP GASKET / BEAM CAMSHAFT CAP / CAMSHAFT / OIL SEAL INSTALLATION

1. Locate the camshaft dowel pins as illustrated.

2. Apply a 3 mm thick continuous bead of sealant to the bottom surface of the beam camshaft cap along the groove.

 Specified sealant:
 Mitsubishi genuine Part No. MD970389 or equivalent

3. Apply sealant to the illustrated position of the cylinder head upper surface.

 Specified sealant:
 Mitsubishi genuine Part No. MD970389 or equivalent

4. Install the beam camshaft cap gasket.
(5) Install the beam camshaft cap before the sealant applied becomes dry and hard.

(6) Tighten the bolts to the specified torque in the order shown in the illustration.
Specified torque: 20 Nm

(7) Install the camshaft oil seal before the sealant applied becomes dry and hard.

(8) Wipe off squeezed out excess sealant from the circumference of the beam camshaft cap.

C· CAMSHAFT POSITION SENSING CYLINDER SUPPORT INSTALLATION

(1) Apply a 3 mm bead of form-in-place gasket (FIPG) to the area shown.

Specified sealant:
- Mitsubishi genuine Part No. MD970389 or equivalent

D· CAMSHAFT POSITION SENSING CYLINDER INSTALLATION

(1) Set the No. 1 cylinder to the compression top dead center position (so that dowel pin of the exhaust camshaft is at the top).

(2) Install the camshaft position sensing cylinder so that the white paint mark is facing in the direction shown in the illustration.

INSPECTION CAMSHAFT

(1) Measure the cam height.

Standard value:
- Intake 35.79 mm
- Exhaust 37.14 mm

Limit:
- Intake 35.29 mm
- Exhaust 36.64 mm
LASH ADJUSTER

Caution
- The lash adjusters are precision-engineered mechanisms. Do not allow them to become contaminated by dirt or other foreign substances.
- Do not attempt to disassemble the lash adjusters.
- Use only fresh diesel fuel to clean the lash adjusters.

(1) Prepare three containers and approximately five liters of diesel fuel. Into each container, pour enough diesel fuel to completely cover a lash adjuster when it is standing upright. Then, perform the following steps with each lash adjuster.

(2) Place the lash adjuster in container A and clean its outside surface.

 NOTE
 Use a nylon brush if deposits are hard to remove.

(3) While gently pushing down the internal steel ball using special tool MD998442, move the plunger through 5 to 10 strokes until it slides smoothly. In addition to eliminating stiffness in the plunger, this operation will remove dirty oil.

 Caution
 - The steel ball spring is extremely weak, so the lash adjuster’s functionality may be lost if the air bleed wire is pushed in hard.

 NOTE
 If the plunger remains stiff or the mechanism appears otherwise abnormal, replace the lash adjuster.
(4) Removal the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

Caution
- Make sure the oil hole in the side of the body is pointing toward container A. Do not point the oil hole at yourself or other people.

(5) Place the lash adjuster in container B. Then, gently push down the internal steel ball using special tool MD998442 and move the plunger through 5 to 10 strokes until it slides smoothly. This operation will clean the lash adjuster's pressure chamber.

Caution
- The steel ball spring is extremely weak, so the lash adjuster's functionality may be lost if the air bleed wire is pushed in hard.

(6) Remove the lash adjuster from the container. Then, push down the steel ball gently and push the plunger to eliminate diesel fuel from the pressure chamber.

Caution
- Make sure the oil hole in the side of the body is pointing toward container A. Do not point the oil hole at yourself or other people.

(7) Place the lash adjuster in container C. Then, gently push down the internal steel ball using special tool MD998442.

Caution
- Do not use container C for cleaning. If cleaning is performed in container C, foreign matter could enter the pressure chamber when chamber is filled with diesel fuel.

(8) Stand the lash adjuster with its plunger at the top, then push the plunger downward firmly until it moves through its greatest possible stroke. Return the plunger slowly, then release the steel ball and allow the pressure chamber to fill with diesel fuel.
(9) Remove the lash adjuster from the container, then stand the lash adjuster with its plunger at the top. Push the plunger firmly and check that it does not move. Also, check that the lash adjuster’s height matches that of a new lash adjuster.

NOTE
If lash adjuster contracts, perform the operations (7) through (9) again to fill it with diesel fuel completely. Replace the lash adjuster if it still contracts after performing these steps.

(10) Set the lash adjuster on the special tool MD998440 (leak down tester).

(11) Remove the bolt from the tester, then adjust the height as illustrated.

(12) After the plunger has moved downward slightly measure the time taken for it to move downward by a further 1 mm.

Standard value:
3 - 20 second/1 mm [with diesel fuel at 15 - 20°C (59 - 68°F)]

NOTE
Replace the lash adjuster if the time measurement is out of specification.

(13) Place the lash adjuster in container C again, then gently push down the internal steel ball using special tool MD998442.

(14) Stand the lash adjuster with its plunger at the top, then push the plunger downward firmly until it moves through its greatest possible stroke. Return the plunger slowly, then release the steel ball and allow the pressure chamber to fill with diesel fuel.
(15) Remove the lash adjuster from the container, then stand the lash adjuster with its plunger at the top. Push the plunger firmly and check that it does not move. Also, check the lash adjuster's height matches that of a new lash adjuster.

NOTE
If lash adjuster contracts, perform the operations (13) through (15) again to fill it with diesel fuel completely. Replace the lash adjuster if it still contracts after performing these steps.

(16) Stand the lash adjuster upright to prevent diesel fuel from spilling out. Do not allow the lash adjuster to become contaminated by dirt or other foreign matter. Fit the lash adjuster onto the engine as soon as possible.
Apply engine oil to all moving parts before installation.

Removal steps

1. Cylinder head bolt
2. Cylinder head assembly
3. Cylinder head gasket
4. Retainer lock
5. Valve spring retainer
6. Valve spring
7. Intake valve
8. Retainer lock
9. Valve spring retainer
10. Valve spring
11. Exhaust valve
12. Valve stem seal
13. Valve spring seat
14. Valve stem seal
15. Valve spring seat
16. Intake valve guide
17. Exhaust valve guide
18. Intake valve seat
19. Exhaust valve seat
20. Cylinder head
REMOVAL AND INSTALLATION (GDI)

Apply engine oil to all moving parts before installation.

Removal steps

- **1.** Cylinder head bolt
- **2.** Cylinder head assembly
- **3.** Cylinder head gasket
- **4.** Retainer lock
- **5.** Valve spring retainer
- **6.** Valve spring
- **7.** Intake valve
- **8.** Retainer lock
- **9.** Valve spring retainer
- **10.** Valve spring
- **11.** Exhaust valve
- **12.** Valve stem seal
- **13.** Valve spring seat
- **14.** Valve stem seal
- **15.** Valve spring seat
- **16.** Intake valve guide
- **17.** Exhaust valve guide
- **18.** Intake valve seat
- **19.** Exhaust valve seat
- **20.** Cylinder head
REMOVAL SERVICE POINTS
PRECAUTION FOR REMOVED PARTS
Keep removed parts in order according to the cylinder number and intake/exhaust.

◆ A ◆ CYLINDER HEAD BOLTS REMOVAL
(1) Using the special tool, loosen the cylinder head bolts. Loosen evenly, little by little.

◆ B ◆ RETAINER LOCK REMOVAL
(1) Store removed valves, springs and other parts, tagged to indicate their cylinder No. and location for reassembly.
VALVE STEM SEAL REMOVAL

1. Do not reuse removed stem seal.

INSTALLATION SERVICE POINTS

VALVE STEM SEAL INSTALLATION

1. Install the valve spring seat.
2. The special tool must be used to install the valve stem seal. Improper installation could result in oil leaks past the valve guide.

Caution

- Do not reuse removed valve stem seals.

VALVE SPRING INSTALLATION

1. Direct the valve spring end with identification color toward the spring retainer.
C. Retainer Lock Installation

1. The valve spring, if excessively compressed, causes the bottom end of the retainer to be in contact with, and damage, the stem seal.

D. Cylinder Head Gasket Identification

Identification mark: 4G63N

E. Cylinder Head Bolt Installation

1. When installing the cylinder head bolts, check that the shank length of each bolt meets the limit. If the limit is exceeded, replace the bolt.

 Limit: Max. 99.4 mm

2. Apply engine oil to the bolt threads and to the washers.

3. Using the special tool (MB991654) and according to the tightening sequence, tighten the bolts to the specified torque.

 Tightening torque: 78 Nm

4. Loosen all bolts fully.

5. Retighten the loosened bolts to a torque of 20 Nm in the specified tightening sequence.
(6) Make paint marks on the cylinder head bolt heads and cylinder head.

(7) Give a 90° turn to the cylinder head bolts in the specified tightening sequence.

(8) Give another 90° turn to the cylinder head bolts and make sure that the paint mark on the head of each cylinder head bolt and that on the cylinder head are on the same straight line.

Caution

- If the bolt is turned less than 90°, proper fastening performance may not be expected. When tightening the bolt, therefore, be careful to give a sufficient turn to it.
- If the bolt is overtightened, loosen the bolt completely and then retighten it by repeating the tightening procedure from step (1).

INSPECTION

CYLINDER HEAD

(1) Check the cylinder head gasket surface for flatness by using a straightedge and thickness gauge.

- **Standard value:** 0.05 mm
- **Limit:** 0.2 mm

(2) If the service limit is exceeded, correct to meet specification.

- **Grinding limit:** *0.2 mm*

 * Includes combined with cylinder block grinding.

Cylinder head height (Specification when new):

- SOHC 119.9 - 120.1 mm
- GDI 131.9 - 132.1 mm
VALVE

(1) Check the valve face for correct contact. If incorrect, reface using a valve refacer. Valve seat contact should be maintained uniform at the center of valve face.

(2) If the margin exceeds the service limit, replace the valve.

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Exhaust</td>
<td>1.2</td>
<td>0.7</td>
</tr>
<tr>
<td>GDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Exhaust</td>
<td>1.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

(3) Measure valve's total length. If measurement is less than specified, replace the valve.

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>112.30</td>
<td>111.80</td>
</tr>
<tr>
<td>Exhaust</td>
<td>114.11</td>
<td>113.61</td>
</tr>
<tr>
<td>GDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>105.5</td>
<td>105.0</td>
</tr>
<tr>
<td>Exhaust</td>
<td>105.7</td>
<td>105.2</td>
</tr>
</tbody>
</table>

VALVE SPRING

(1) Measure the free height of spring and, if it is smaller than the limit, replace.

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC</td>
<td>51.0</td>
<td>50.0</td>
</tr>
<tr>
<td>GDI</td>
<td>48.3</td>
<td>47.3</td>
</tr>
</tbody>
</table>

(2) Measure the squareness of the spring and, if the limit is exceeded, replace.

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC</td>
<td>2°</td>
<td>4°</td>
</tr>
<tr>
<td>GDI</td>
<td>1.5°</td>
<td>4°</td>
</tr>
</tbody>
</table>
VALVE GUIDE

(1) Measure the clearance between the valve guide and valve stem. If the limit is exceeded, replace the valve guide or valve, or both.

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.02 - 0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.03 - 0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>GDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>0.02 - 0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.05 - 0.09</td>
<td>0.15</td>
</tr>
</tbody>
</table>

VALVE SEAT

(1) Assemble the valve, then measure the valve stem projection between the end of the valve stem and the spring seating surface. If the measurement exceeds the specified limit, replace the valve seat.

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value mm</th>
<th>Limit mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>49.30</td>
<td>49.80</td>
</tr>
<tr>
<td>Exhaust</td>
<td>49.30</td>
<td>49.80</td>
</tr>
<tr>
<td>GDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake</td>
<td>49.20</td>
<td>49.70</td>
</tr>
<tr>
<td>Exhaust</td>
<td>48.40</td>
<td>48.90</td>
</tr>
</tbody>
</table>

VALVE SEAT RECONDITIONING PROCEDURE

(1) Before correcting the valve seat, check for clearance between the valve guide and valve and, if necessary, replace the valve guide.
(2) Using the seat grinder, correct to obtain the specified seat width and angle.
(3) After correcting the valve seat, lap the valve and valve seat using lapping compound. Then, check the valve stem projection (refer to VALVE SEAT in INSPECTION).
VALVE SEAT REPLACEMENT PROCEDURE

(1) Cut the valve seat to be replaced from the inside to thin the wall thickness. Then, remove the valve seat.

(2) Rebore the valve seat hole in the cylinder head to a selected oversize valve seat diameter.

Valve seat ring hole diameter

<table>
<thead>
<tr>
<th>Item</th>
<th>Intake</th>
<th>Standard value mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOHC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30 O.S.</td>
<td>34.30 - 34.33</td>
</tr>
<tr>
<td></td>
<td>0.60 O.S.</td>
<td>34.60 - 34.63</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30 O.S.</td>
<td>31.80 - 31.83</td>
</tr>
<tr>
<td></td>
<td>0.60 O.S.</td>
<td>32.60 - 32.63</td>
</tr>
<tr>
<td>GDI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30 O.S.</td>
<td>35.30 - 35.33</td>
</tr>
<tr>
<td></td>
<td>0.60 O.S.</td>
<td>35.60 - 35.63</td>
</tr>
<tr>
<td></td>
<td>Exhaust</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30 O.S.</td>
<td>33.30 - 33.33</td>
</tr>
<tr>
<td></td>
<td>0.60 O.S.</td>
<td>33.60 - 33.63</td>
</tr>
</tbody>
</table>

(3) Before fitting the valve seat, either heat the cylinder head up to approximately 250°C (482°F) or cool the valve seat in liquid nitrogen, to prevent the cylinder head bore from galling.

(4) Using a valve seat cutter, correct the valve seat to the specified width and angle.

See “VALVE SEAT RECONDITIONING PROCEDURE”.
VALVE GUIDE REPLACEMENT PROCEDURE

(1) Force the valve guide out toward the cylinder block using a press.

(2) Machine the valve guide hole in the cylinder head to the size of the oversize valve guide to be installed.

Caution

- Do not use the valve guide of the same size as the removed one.

Valve gauge hole diameters in cylinder head

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard value mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SOHC</td>
<td></td>
</tr>
<tr>
<td>0.05 O.S.</td>
<td>11.05 - 11.07</td>
</tr>
<tr>
<td>0.25 O.S.</td>
<td>11.25 - 11.27</td>
</tr>
<tr>
<td>0.50 O.S.</td>
<td>11.50 - 11.52</td>
</tr>
<tr>
<td>GDI</td>
<td></td>
</tr>
<tr>
<td>0.05 O.S.</td>
<td>12.05 - 12.07</td>
</tr>
<tr>
<td>0.25 O.S.</td>
<td>12.25 - 12.27</td>
</tr>
<tr>
<td>0.50 O.S.</td>
<td>12.50 - 12.52</td>
</tr>
</tbody>
</table>

(3) Press-fit the valve guide until it protrude specified value (SOHC 14 mm, GDI 19.5 mm) as shown in the illustration.

Caution

- Press the valve guide from the cylinder head top surface.
- Valve guide for intake valve and that for exhaust valve are different in length. (45.5 mm for intake valve; 50.5 mm for exhaust valve)

(4) After the valve guide has been installed, insert a new valve to check for smooth sliding motion.
Apply engine oil to all moving parts before installation.

10. FRONT CASE, COUNTERBALANCE SHAFTS AND OIL PAN
REMOVAL AND INSTALLATION <GDI ENGINE - VEHICLE FOR EUROPE AND SOHC ENGINE>
Apply engine oil to all moving parts before installation.

Removal steps
1. Oil filter
2. Drain plug
3. Oil pan lower
4. Oil screen
5. Gasket
6. Oil pump cover
7. Oil pump driven gear
8. Oil pump driven gear
9. Oil pump driven gear
10. Oil pressure switch
11. Relief plug
12. Relief spring
13. Relief plunger
14. Oil filter bracket
15. Oil filter bracket gasket
16. Front case assembly
17. Front case assembly
18. Front case assembly
19. Front case assembly
REMOVAL SERVICE POINTS

◆A◆ OIL PAN REMOVAL
(1) Remove all oil pan bolts.
(2) Drive in the special tool between the cylinder block and oil pan.

NOTE
Never use a screwdriver or chisel, instead of the service tool, as a deformed oil pan flange will result in oil leakage.

◆B◆ OIL PAN LOWER REMOVAL
(1) Apply a wood block to the oil pan side and remove the oil pan lower by tapping lightly on it with a plastic hammer.

Caution
• Do not use a scraper or special tool to remove the oil pan.

◆C◆ OIL PAN UPPER REMOVAL
(1) Remove all bolts.
(2) Screw a bolt into bolt hole A shown to remove the oil pan.

Caution
• Do not use a scraper or special tool to remove the oil pan.

◆D◆ PLUG REMOVAL
(1) If the plug is too tight, hit the plug head with a hammer two to three times, and the plug will be easily loosened.

◆E◆ FLANGE BOLT REMOVAL
(1) Remove the plug on the side of cylinder block.
(2) Insert a Phillips screwdriver (shank diameter 8 mm) into the plug hole to lock the counterbalance shaft.
(3) Loosen the flange bolt.

F COUNTERBALANCE SHAFT FRONT BEARING REMOVAL

(1) Using the special tool, remove the counterbalance shaft front bearing from the cylinder block.

NOTE
Be sure to remove the front bearing first. If it has not been removed, the Rear Bearing Puller cannot be used.

G COUNTERBALANCE SHAFT REAR BEARING REMOVAL

(1) Using the special tool, remove the left counterbalance shaft rear bearing from the cylinder block.

NOTE
When removing the left counterbalance shaft rear bearing, install the special tool (MB991603) in front of the cylinder block.

INSTALLATION SERVICE POINTS

A RIGHT COUNTERBALANCE SHAFT REAR BEARING INSTALLATION

(1) Apply engine oil to the outer surface of bearing.

(2) Using special tools, install right rear bearing. Make sure that oil hole of bearing is aligned with oil hole of cylinder block.
B- LEFT COUNTERBALANCE SHAFT REAR BEARING INSTALLATION

1. Install the special tool (Guide Plate) to the cylinder block.
2. Apply engine oil to the rear bearing outer circumference and bearing hole in the cylinder block.

3. Using the special tool, install the rear bearing.

NOTE
The left rear bearing has no oil holes.

C- COUNTERBALANCE SHAFT FRONT BEARING INSTALLATION

1. Using special tools, install front bearing.

D- COUNTERBALANCE SHAFT OIL SEAL INSTALLATION
► E OIL PUMP OIL SEAL INSTALLATION

► F CRANKSHAFT FRONT OIL SEAL INSTALLATION
(1) Using the special tool, install the crankshaft front oil seal into the front case.

► G OIL PUMP DRIVEN GEAR / OIL PUMP DRIVE GEAR INSTALLATION
(1) Apply engine oil amply to the gears and line up the alignment marks.

► H FRONT CASE ASSEMBLY INSTALLATION
(1) Set the special tool on the front end of crankshaft and apply a thin coat of engine oil to the outer circumference of the special tool to install the front case.

(2) Install the front case assembly through a new front case gasket and temporarily tighten the flange bolts (other than those for tightening the filter bracket).
** SEALANT APPLICATION TO OIL PRESSURE SWITCH

1. Coat the threads of switch with sealant and install the switch using the special tool.

 Specified sealant: 3M ATD Part No. 8660 or equivalent

 Caution
 - Keep the end of the thread portion clear or sealant.
 - Avoid overtightening.

** FLANGE BOLT INSTALLATION

1. Insert a Phillips screwdriver into a hole in the left side of the cylinder block to lock the silent shaft.

2. Secure the oil pump driven gear onto the left counterbalance shaft by tightening the flange bolt to specified torque.

** PLUG INSTALLATION

1. Install a new O-ring to the groove of front case.

2. Using the special tool, install the plug and tighten to specified torque.

** OIL PAN INSTALLATION

1. Clean both mating surfaces of oil pan and cylinder block.

2. Apply a 4 mm wide bead of sealant to the entire circumference of the oil pan flange.

 Specified sealant: Mitsubishi Genuine Part No. MD970389 or equivalent
NOTE
(1) Be sure to install the oil pan quickly while the sealant is wet (within 15 minutes).
(2) After installation, keep the sealed area away from the oil and coolant for approx. one hour.

(3) Note the difference in bolt lengths at the location shown.

Oil pan upper

Groove portion
Bolt hole portion

M6 × 16 mm

M6 × 16 mm

Oil pan viewed from lower side

Crank pulley side

8 mm bolts

(1) Clean both mating surfaces of oil pan and cylinder block.
(2) Apply a 4 mm wide bead of sealant to the entire circumference of the oil pan upper flange.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent

NOTE
(1) Be sure to install the oil pan quickly while the sealant is wet (within 15 minutes).
(2) After installation, keep the sealant area away from the oil and coolant for approx. one hour.

(3) Note the difference in bolt lengths at the location shown.
(4) Clean both mating surfaces of oil pan lower and oil pan upper.

(5) Apply a 4 mm wide bead of sealant to the entire circumference of the oil pan lower flange.

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent

NOTE
(1) Be sure to install the oil pan quickly while the sealant is wet (within 15 minutes).
(2) After installation, keep the sealant area away from the oil and coolant for approx. one hour.

(6) Tighten the oil pan lower mounting bolts in the sequence shown in the illustration.

DRAIN PLUG GASKET INSTALLATION
(1) Install the drain plug gasket in the shown direction.

OIL FILTER INSTALLATION
(1) Clean the installation surface of the filter bracket.
(2) Apply engine oil to the O-ring of the oil filter.
(3) Screw the oil filter in until the O-ring contacts the bracket. Then tighten 3/4 turn (tightening torque: 16 Nm).

NOTE
For the oil filter MD135737, tighten one turn (Tightening torque: 14 Nm) after the O-ring contacts the bracket.
INSPECTION
FRONT CASE
(1) Check oil holes for clogging and clean if necessary.
(2) Check the left counterbalance shaft front bearing section for wear, damage and seizure. If there is anything wrong with the section, replace the front case.
(3) Check the front case for cracks and other damage. Replace cracked or damaged front case.

OIL SEAL
(1) Check the oil seal lip for wear and damage. Replace oil seal if necessary.
(2) Check the oil seal lip for deterioration. Replace oil seal if necessary.

COUNTERBALANCE SHAFT
(1) Check oil holes for clogging.
(2) Check journals for seizure, damage and contact with bearing. If there is anything wrong with the journal, replace the counterbalance shaft, bearing or front case assembly.

OIL PUMP
(1) Assemble the oil pump gear to the front case and rotate it to ensure smooth rotation with no looseness.
(2) Ensure that there is no ridge wear on the contact surface between the front case and the gear surface of the oil pump cover.
(3) Check the side clearance.

Standard value:
 Drive gear 0.08 - 0.14 mm
 Driven gear 0.06 - 0.12 mm
Apply engine oil to all moving parts before installation.

Removal steps

1. Nut
2. Connecting rod cap
3. Connecting rod bearing
4. Piston and connecting rod assembly
5. Connecting rod bearing
6. Piston ring No. 1
7. Piston ring No. 2
8. Oil ring
9. Piston pin
10. Piston
11. Connecting rod
12. Bolt
REMOVAL SERVICE POINTS

A CONNECTING ROD CAP REMOVAL

1. Mark the cylinder number on the side of the connecting rod big end for correct reassembly.
2. Keep the removed connecting rods, caps, and bearings in order according to the cylinder number.

B PISTON PIN REMOVAL

1. Insert the special tool, Push Rod, into the piston from the side on which the front mark is stamped in the piston head, and attach the guide C to the push rod end.
2. Place the piston and connecting rod assembly on the special tool, Piston Pin Setting Base, with the front mark facing upward.
3. Using a press, remove the piston pin.

NOTE
Keep the disassembled pistons, piston pins and connecting rods in order according to the cylinder number.
INSTALLATION SERVICE POINTS

>A•PISTON PIN INSTALLATION

(1) Measure the following dimensions of the piston, piston pin and connecting rod.
A: Piston pin insertion hole length
B: Distance between piston bosses
C: Piston pin length
D: Connecting rod small end width

(2) Obtain dimension L (to be used later) from the above measurements by using by following formula.

\[
L = \frac{(A - C) - (B - D)}{2}
\]

(3) Insert the special tool, Push Rod, into the piston pin and attach the guide A to the push rod end.

(4) Assemble the connecting rod in the piston with their front marks facing the same direction.

(5) Apply engine oil to the entire periphery of the piston pin.

(6) Insert the piston pin, push rod and guide A assembly having assembled in step (3) from the guide A side into the piston pin hole on the front marked side.

(7) Screw the guide B into the guide A until the gap between both guides amounts to the value L obtained in step (2) plus 3 mm.

(8) Place the piston and connecting rod assembly onto the piston setting base with the front marks directed upward.

(9) Press-fit the piston pin using a press.
If the press-fitting force required is less than the standard value, replace the piston and piston pin set or/and the connecting rod.

Standard value: 7,350 - 17,200 N
(10) Check that the piston moves smoothly

B. OIL RING INSTALLATION

(1) Fit the oil ring spacer into the piston ring groove.

NOTE

1. The side rails and spacer may be installed in either direction.
2. New spacers and side rails are colored for identification of their sizes.

<table>
<thead>
<tr>
<th>Size</th>
<th>Identification color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>0.50 mm oversize</td>
<td>Red</td>
</tr>
<tr>
<td>1.00 mm oversize</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

(2) Install the upper side rail.
To install the side rail, first fit one end of the rail into the piston groove, then press the remaining portion into position by finger. See illustration. Use of ring expander to expand the side rail end gap can break the side rail, unlike other piston rings.

Caution
- Do not use piston ring expander when installing side rail.

(3) Install the lower side rail in the same procedure as described in step (2).

(4) Make sure that the side rails move smoothly in either direction.
C- PISTON RING NO. 2 / PISTON RING NO. 1 INSTALLATION

(1) Using piston ring expander, fit No. 2 and then No. 1 piston ring into position.

NOTE
1. The ring end is provided with identification mark.

<table>
<thead>
<tr>
<th>Item</th>
<th>Identification mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1 ring</td>
<td>4G63 SOHC 1R</td>
</tr>
<tr>
<td></td>
<td>4G64 GDI T</td>
</tr>
<tr>
<td>No. 2 ring</td>
<td>4G63 SOHC 2R</td>
</tr>
<tr>
<td></td>
<td>4G64 GDI 2T</td>
</tr>
</tbody>
</table>

2. Install piston rings with identification mark facing up, to the piston crown side.

3. Size marks on position rings are as follows.

<table>
<thead>
<tr>
<th>Size</th>
<th>Size mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>None</td>
</tr>
<tr>
<td>0.50 mm oversize</td>
<td>50</td>
</tr>
<tr>
<td>1.00 mm oversize</td>
<td>100</td>
</tr>
</tbody>
</table>

D- PISTON AND CONNECTING ROD ASSEMBLY INSTALLATION

(1) Liberally coat engine oil on the circumference of the piston, piston ring, and oil ring.

(2) Arrange the piston ring and oil ring gaps (side rail and spacer) as shown in the figure.

(3) Rotate the crankshaft so that crank pin is on the center of cylinder bore.

(4) Use suitable thread protectors on the connecting rod bolts before inserting piston and connecting rod assembly into the cylinder block.

Care must be taken not to nick the crank pin.

(5) Using a suitable piston ring compressor tool, install the piston and connecting rod assembly into the cylinder block.

E- CONNECTING ROD BEARINGS INSTALLATION

When the bearing needs replacing, select and install a proper bearing by the following procedure.

(1) Measure the crankshaft pin diameter and confirm its classification from the following table. In the case of a crankshaft supplied as a service part, identification colors of its pins are painted at the positions shown in the illustration.
(2) The connecting rod bearing identification mark is stamped at the position shown in the illustration.

<table>
<thead>
<tr>
<th>Crankshaft pin</th>
<th>Connecting rod bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification</td>
<td>Identification mark</td>
</tr>
<tr>
<td>Production part</td>
<td>Service part</td>
</tr>
<tr>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>None</td>
</tr>
</tbody>
</table>

Connecting rod I.D.: 48.000 - 48.015 mm

(3) Select a proper bearing from the above table on the basis of the identification data confirmed under items (1) and (2).

[Example]
If the measured value of a crankshaft pin outer diameter is 44.996 mm, the pin is classified as “1” in the table. In case the crankshaft is also replaced by a spare part, check the identification colors of the pins painted on the new crankshaft. If the color is yellow, for example, the pin is classified as “1”. In the above cases, select the connection rod bearing having identification mark “1”.

Connecting rod cap nut installation

(1) Verifying the mark made during disassembly, install the bearing cap to the connecting rod. If the connecting rod is new with no index mark, make sure that the bearing locking notches come on the same side as shown.

(2) Make sure that the connecting rod big end side clearance meets the specification.

Standard value: 0.10 - 0.25 mm
Limit: 0.4 mm
CONNECTING ROD CAP NUT INSTALLATION

Caution
- If the cylinder head has been installed before installing the connecting rod cap nut, be sure to remove the spark plugs.

1. Since the connecting rod cap bolts and nuts are torqued using the plastic area tightening method, the bolts should be examined BEFORE reuse. If the bolt threads are "necked down", the bolt should be replaced. Necking can be checked by running a nut with fingers to the full length of the bolt threads. If the nut does not run down smoothly, the bolt should be replaced.

2. Before installation of each nut, apply engine oil to the thread portion and bearing surface of the nut.

3. Install each nut to the bolt and tighten it with fingers. Then tighten the nuts alternately to install the cap properly.

4. Tighten the nuts to a torque of 20 Nm.

5. Make a paint mark on the head of each nut.

6. Make a paint mark on the bolt end at the position 90° to 100° from the paint mark made on the nut in the direction of tightening the nut.

7. Give a 90° to 100° turn to the nut and make sure that the paint mark on the nut and that on the bolt are in alignment.

Caution
- If the nut is turned less than 90°, proper fastening performance may not be expected. When tightening the nut, therefore, be careful to give a sufficient turn to it.
- If the nut is overtightened (exceeding 100°), loosen the nut completely and then retighten it by repeating the tightening procedure from step (1).

INSPECTION

PISTON RING

1. Check the piston ring for damage, excessive wear, and breakage and replace if defects are evident. If the piston has been replaced with a new one, the piston rings must also be replaced with new ones.

2. Check for the clearance between the piston ring and ring groove. If the limit is exceeded, replace the ring or piston, or both.

Standard value: 0.02 - 0.06 mm
Limit: 0.1 mm
(3) Install the piston ring into the cylinder bore. Force it down with a piston, its crown being in contact with the ring, to correctly position it at right angles to the cylinder wall. Then, measure the end gap with a feeler gauge. If the ring gap is excessive, replace the piston ring.

Standard value:
- No. 1 ring 0.25 - 0.35 mm
- No. 2 ring 0.40 - 0.55 mm
- Oil ring 0.10 - 0.40 mm

Limit:
- No. 1, No. 2 ring 0.8 mm
- Oil ring 1.0 mm

CRANKSHAFT PIN OIL CLEARANCE
(PLASTIC GAUGE METHOD)
(1) Remove oil from the crankshaft pin and connecting rod bearing.
(2) Cut the Plastigage to the same length as the width of the bearing and place it on the crankshaft pin in parallel with its axis.

(3) Install the connecting rod cap carefully and tighten the nuts to specified torque.
(4) Carefully remove the connecting rod cap.
(5) Measure the width of the Plastigage at its widest part by using a scale printed on the Plastigage package.

Standard value: 0.02 - 0.05 mm
Limit: 0.1 mm
12. CRANKSHAFT, FLYWHEEL AND DRIVE PLATE

REMOVAL AND INSTALLATION

Apply engine oil to all moving parts before installation.

Removal steps
1. Flywheel bolt <M/T>
2. Adapter plate <M/T>
3. Flexible flywheel <M/T>
4. Adapter plate <M/T>
5. Crankshaft bushing <M/T>
6. Drive plate bolt <A/T>
7. Adapter plate <A/T>
8. Drive plate <A/T>
9. Crankshaft bushing <A/T>
10. Rear plate
11. Bell housing cover
12. Oil seal case
13. Oil seal
14. Bearing cap bolt
15. Bearing cap
16. Crankshaft bearing, lower
17. Crankshaft
18. Crankshaft bearing, upper
19. Crankshaft thrust bearing <GDI engine>
20. Oil jet <GDI engine>
21. Cylinder block

Caution
On the flexible wheel equipped engines, do not remove any of the bolts “A” of the flywheel shown in the illustration. The balance of the flexible flywheel is adjusted in an assembled condition. Removing the bolt, therefore, can cause the flexible flywheel to be out of balance, giving damage to the flywheel.
REMOVAL SERVICE POINT

◆ A ◆ OIL JET REMOVAL

(1) Knock out the oil jets using an appropriate metal rod.

Caution
- Be careful not to scratch the cylinder wall.
- Do not reuse the removed oil jets.

INSTALLATION SERVICE POINTS

◆ A ◆ OIL JET INSTALLATION

(1) Using a 4.5 mm diameter pin punch, drive in the oil jet to the crankshaft journal until it seats to the bottom.

◆ B ◆ CRANKSHAFT THRUST BEARING INSTALLATION

(1) Install the two thrust bearing in the number 3 bearing bore in the cylinder block. For easier installation, apply engine oil to the bearings; this will help hold them in position.

(2) The thrust bearings must be installed with their groove side toward the crankshaft web.

◆ C ◆ CRANKSHAFT BEARING INSTALLATION

(1) From the following table, select a bearing whose size is appropriate for the crankshaft journal outside diameter.
<table>
<thead>
<tr>
<th>Crankshaft journal outside diameter</th>
<th>Cylinder block bearing bore</th>
<th>Crankshaft bearing</th>
<th>Crankshaft bearing for No. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification color</td>
<td>Size mm</td>
<td>Identification mark</td>
<td>Identification mark or color</td>
</tr>
<tr>
<td>Yellow</td>
<td>56.994 - 57.000</td>
<td>0</td>
<td>1 or Green</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2 or Yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1 or Green</td>
</tr>
<tr>
<td>None</td>
<td>56.988 - 56.994</td>
<td>0</td>
<td>2 or Yellow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3 or None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2 or Yellow</td>
</tr>
<tr>
<td>White</td>
<td>56.982 - 56.988</td>
<td>0</td>
<td>3 or None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>4 or Blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5 or Red</td>
</tr>
</tbody>
</table>

For example, if the crankshaft journal outside diameter ID color is “yellow” and cylinder block bearing bore ID mark is “1”, select a bearing whose ID mark is “2” or ID color is “yellow” for number 1, 2, 4 and 5, and a bearing whose ID mark is “1” or ID color is “green” for number 3.

If there is no ID color paint on the crankshaft, measure the journal outside diameter and select a bearing appropriate for the measured value.
(2) Install the bearings having an oil groove to the cylinder block.
(3) Install the bearings having no oil groove to the bearing cap.

▶ ▶ BEARING CAP / BEARING CAP BOLT INSTALLATION

(1) Install the bearing caps so the arrow points to the timing belt side.
(2) Before installing the bearing cap bolts, check that the shank length of each bolt meets the limit. If the limit is exceeded, replace the bolt.

Limit: Max. 71.1 mm

(3) Apply engine oil to the threaded portion and bearing surface of the bolt.

(4) Tighten the bolts to 25 Nm in the specified tightening sequence.

(5) Make a paint mark on the head of each bolt.
(6) Make a paint mark on the bearing cap at the position 90° to 100° from the paint mark made on the bolt in the direction of tightening the bolt.
(7) According to the specified tightening sequence, give a 90° to 100° turn to each bolt and make sure that the paint mark on the bolt and that on the cap are in alignment.

Caution
- If the bolt is turned less than 90°, proper fastening performance may not be expected. When tightening the bolt, therefore, be careful to give a sufficient turn to it.
- If the bolt is overtightened (exceeding 100°), loosen the bolt completely and then retighten it by repeating the tightening procedure from step (1).
After installing the bearing caps, make sure that the crankshaft turns smoothly and the end play is correct. If the end play exceeds the limit, replace No. 3 crankshaft bearings.

Standard value: 0.05 - 0.18 mm
Limit: 0.25 mm

E - OIL SEAL INSTALLATION

F - SEALANT APPLICATION TO OIL SEAL CASE

Specified sealant:
Mitsubishi Genuine Part No. MD970389 or equivalent

NOTE

(1) Be sure to install the case quickly while the sealant is wet (within 15 minutes).

(2) After installation, keep the sealed area away from the oil and coolant for approx. one hour.

INSPECTION

CRANKSHAFT OIL CLEARANCE (PLASTIGAGE METHOD)

(1) Remove oil from the crankshaft journal and the crankshaft bearing.

(2) Install the crankshaft.

(3) Cut the Plastigage to the same length as the width of the bearing and place it on the journal in parallel with its axis.

(4) Install the crankshaft bearing cap carefully and tighten the bolts to the specified torque.

(5) Carefully remove the crankshaft bearing cap.

(6) Measure the width of the Plastigage at its widest part by using a scale printed on the Plastigage package.

Standard value: 0.02 - 0.04 mm
Limit: 0.1 mm
CYLINDER BLOCK

1. Visually check for scratches, rust, and corrosion. Use also a flaw detecting agent for the check. If defects are evident, correct, or replace.

2. Using a straightedge and feeler gauge, check the block top surface for warpage. Make sure that the surface is free from gasket chips and other foreign matter.

 Standard value: 0.05 mm
 Limit: 0.1 mm

3. If the distortion is excessive, correct within the allowable limit or replace.

 Grinding limit: 0.2 mm

 Includes/combined with cylinder head grinding

 Cylinder block height (when new):
 4G63 284 mm
 4G64 290 mm

4. Check cylinder walls for scratches and seizure. If defects are evident, correct (bored to oversize) or replace.

5. Using cylinder gauge, measure the cylinder bore and cylindricity. If worn badly, correct cylinder to an oversize and replace piston and piston rings. Measure at the points shown in illustration.

 Standard value:
 Cylinder I.D.
 4G63 85.00 - 85.03 mm
 4G64 86.50 - 86.53 mm
 Cylindricity 0.01 mm or less

BORING CYLINDER

1. Oversize pistons to be used should be determined on the basis of the largest bore cylinder.

Piston size identification

<table>
<thead>
<tr>
<th>Size</th>
<th>Identification mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50 O.S.</td>
<td>0.50</td>
</tr>
<tr>
<td>1.00 O.S.</td>
<td>1.00</td>
</tr>
</tbody>
</table>

NOTE
Size mark is stamped on the piston top.

2. Measure outside diameter of piston to be used. Measure it in thrust direction as shown.

3. Based on the measured piston O.D. calculate boring finish dimension.

 Boring finish dimension = Piston O.D. + (clearance between piston O.D. and cylinder) - 0.02 mm (honing margin)
(4) Bore all cylinders to the calculated boring finish dimension.

Caution
- To prevent distortion that may result from temperature rise during honing, bore cylinders, working from No. 2, No. 4, No. 1 to No. 3.

(5) Hone to final finish dimension (piston O.D. + clearance between piston O.D. and cylinder).

(6) Check clearance between piston and cylinder.

Clearance between piston and cylinder:

0.02 - 0.04 mm

NOTE
When boring cylinders, finish all of four cylinders to same oversize. Do not bore only one cylinder to an oversize.